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Abstract 
 
 Moisture concentrations in the troposphere are determined to first order by temperature via 
saturation and condensation.  However, most of the tropospheric volume is significantly below 
saturation on average implying the controlling influence of temperature must occur in general 
during excursions from mean conditions.  Therefore characterization of variability is important 
in understanding moisture control mechanisms.  Here we characterize zonal moisture variability 
derived from occultation observations of Global Positioning System (GPS) satellites made by 
GPS/MET in June-July 1995 [Ware et al., 1996] combined with European Centre for Medium-
Range Weather Forecasts (ECMWF) temperature analyses and compare the results with the 
ECMWF global humidity analyses.  The zonal variability estimates are similar but substantial 
differences exist particularly between the individual moisture profiles.  Our analysis of the errors 
in the two moisture data sets suggests that the accuracy of the ECMWF moisture analyses in the 
Northern Hemisphere is similar to that represented in the analysis error covariances but the 
ECMWF moisture analyses in the Southern Hemisphere are significantly less accurate.  We also 
find that significant correlations exist between the errors and true moisture variations through 
most of the troposphere.  The sign of the correlation is consistent with the ECMWF analyses 
smoothing out a significant fraction of the vertical variations in the moisture field.  Variability at 
low latitudes is larger in the GPS results suggesting variations exist at vertical scales resolved by 
the occultations but not by TOVS and the ECMWF analyses.  In the winter hemisphere 
baroclinic zone, ECMWF variability is larger and may be overestimated in the ECMWF 
analyses.   
 Using our error and correlation estimates we derive an optimal weighting for combining the 
occultation and ECMWF moisture information.  The inclusion of the GPS data should reduce the 
analysis errors by more than 50% over most of the lower half of the troposphere.  The impact of 
the GPS data is larger in the winter hemisphere than expected because the ECMWF errors are 
larger there.  The meridional and height dependence of the zonal variability of moisture exhibits 
a distinct bimodal distribution with a minimum near ITCZ and a relative maximum to either side, 
similar to that discussed by Peixoto and Oort [1992] but with a greater magnitude.  The two 
relative maxima are associated with longitudinal variability across the subtropics as well as the 
monsoons in the Northern Hemisphere.  Above ~3 km altitude,  moisture variations are > 50% of 
the mean in Northern (summer) Hemisphere and > 70% of the mean in the Southern (winter) 
Hemisphere.   
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1. INTRODUCTION 
 Tropospheric moisture concentrations are controlled to first order by temperature via the 
Clausius-Clapeyron relation. Variations in tropospheric moisture are of the order of the mean 
moisture and therefore vary by several orders of magnitude over the vertical extent of the 
troposphere.  Since most of the tropospheric volume is not continuously filled by clouds, the 
control exerted by temperature via saturation must in general occur during excursions from mean 
conditions.  Therefore characterization of moisture variability represents an important aspect of 
understanding moisture control mechanisms.  Present understanding and model representations 
of these mechanisms typically limits weather predictions of atmospheric moisture to 12 hours or 
less, a limitation which raises fundamental doubts about the accuracy of free-running climate 
models.  Improvements in control mechanisms will improve precipitation predictions as well as 
our understanding of the present climate system and the evolution of the system under 
anthropogenic changes in forcing.  Further, knowledge of variability provides direct constraints 
in assessing the climate model accuracy. 
 The small spatial and temporal scales over which water varies make accurate observations of 
atmospheric moisture from space difficult such that even the mean distribution of moisture is not 
well characterized globally.  Accurate determination of variance, a second moment, presents an 
even greater challenge.  Here we discuss the zonal variability of water vapor derived from 
occultation observations of the Global Positioning System (GPS) satellites and the global 
ECMWF humidity analyses. 
 In a radio occultation, the limb-viewing geometry yields profiles of the index of refraction, n, 
with a vertical resolution of 0.2 to 1 kilometer in the troposphere at long 20 cm wavelengths 
capable of penetrating aerosols, clouds and precipitation [Kursinski et al. 1997].  The principal 
observable is the additional propagation delay due to the reduction of the speed of light in the 
atmosphere relative to vacuum.  The time rate of change of the additional delay is directly 
related to the bending angle from which n is derived as a function of radius.  Smith and 
Weintraub [1953] showed that atmospheric refractivity, defined as N = (n-1) x 106, at microwave 
wavelengths can be written as 

 221 T
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PbN w+=  (1) 

where P and Pw are total pressure and partial pressure of water vapor respectively in mbar, T is 
temperature in K, b1 is 77.6 N-units K mbar-1 and b2 is 3.73x105 N-units K2 mbar-1.  The first and 
second terms on the RHS are due primarily to the polarizability of the molecules and the 
permanent dipole moment of the water vapor molecule respectively.  The partial pressure of 
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where mw and md are the mean molecular masses of water vapor and dry air respectively.   
 To derive Pw and q from (2) and (3), refractivity, temperature and pressure must be known.  
Refractivity is derived directly from the occultation observations and pressure and temperature 
are related hydrostatically leaving one equation and two unknowns.  The wet and dry 
contributions to refractivity cannot be separated from the GPS observations alone because 
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refractivity at microwave wavelengths is non-dispersive.  The additional constraint used here to 
derive water vapor is temperature from the nearest 6 hour global ECMWF analysis interpolated 
to each occultation location.  A more in depth discussion of the processing of the occultation 
data to derive moisture is described in Kursinski and Hajj [2001].  We refer to water vapor 
derived in this fashion as GPS-ECMWF Water vapor (GE) and the interpolated ECMWF 
analyses as IE.  It is important to note that humidity derived from GPS refractivity and an 
additional constraint on temperature is absolute rather than relative humidity.   
 GPS occultation observations commenced with the launch of GPS/MET in April 1995.  
GPS/MET data acquired from June 21 to July 4, 1995 (referred to as JJ95) has the best qualities 
acquired by GPS/MET for studying moisture.  In the present study we utilize the GPS and 
ECMWF data sets from JJ95 to characterize globally the zonal variance of specific humidity as 
well as the variance of the errors in the GE and ECMWF humidity data sets.   The differing 
resolutions of these two datasets allow insight into their respective accuracies as well as the true 
variability of moisture at the resolution scales or larger.  Variations at smaller scales are 
essentially invisible to the present study.     
 The paper is structured as follows.  Section 2 is a discussion of the zonal variability of 
moisture in the GE and IE data sets.  In section 3 we examine the errors in the GE and IE data 
sets including cross-correlations between the errors and the errors and true moisture variations 
which we find are significant.  In Section 4, we utilize our knowledge of errors we derive and 
derive a best estimate of zonal moisture variability during the JJ95 period as well as an 
indication of the impact GPS should have on global moisture analyses.  In Section 5 we interpret 
the results utilizing the improved understanding of errors developed in Section 3.  We summarize 
and conclude in section 6.   

 
Figure 1: Contours of number of occultation points in each latitude-height bin 

2. RESULTS 

 Since the GPS/Met data set used here is too small to derive a statistically robust 
characterization of global 3-D moisture structure, we have reduced the moisture data into a 2-D, 
latitude versus height grid that retains the vertical and meridional gradients.  Grid boxes are 250 
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meters high spaced every 250 meters in height.  Each box is 10 degrees of latitude wide spaced 
every 5 degrees of latitude.  The number of occultation profile points in each latitude height bin 
shown in Figure 1 ranges from less than 20 to more than 150.   The mean moisture in each grid 
box is an estimate of the zonal mean at that height and latitude which has been discussed by 
Kursinski and Hajj [2001].  In this two dimensional representation, the variance of specific 
humidity estimates in each grid box is the variance of the zonal moisture fluctuations about the 
zonal mean.   
 

 

 
Figure 2: Zonal variability of ECMWF temperatures in (K). a. The complete ECMWF analyses for JJ95. 

b. The subset of the ECMWF analyses interpolated to the GPSMET occultation locations. 
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 The structure of standard deviation of the ECMWF analysis temperatures relative to the 
zonal mean (σT) is shown in Figure 2.  Low latitude zones exhibit the least variability of 1 to 1.4 
K.  Maximum variability as large as 6 K is found in the Southern Hemisphere in the high 
baroclinicity winter region between 30oS and 60oS. Variability in the Northern Hemisphere 
reaches a maximum of 4 to 5 K north of 50N.  Variability in the zone from 20oN to 40oN exhibits 
a distinct vertical dependence with near-surface and upper troposphere maxima and a minimum 
near 5 km altitude associated with the summer monsoons in this zone.  With a few exceptions, 
the complete ECMWF (CE) and ECMWF interpolated to the GPS occultation locations (IE) 
results are in general agreement although noisier than the mean comparison [Kursinski and Hajj, 
2001].  In the structure between 20oN and 40oN, the similarity of the CE and IE σT structure 
above 2 km indicates the GPS sampling has captured the behavior above 2 km.  Within 1.5 km of 
the surface, the smaller variability exhibited in the IE data probably indicates the reduced 
number of occultations reaching that altitude regime (Figure 1) do not capture the entire range of 
behavior there.    

 

 
Figure 3. Standard deviation of specific humidity variations about the zonal mean (in g/kg).   a. Specific humidity 

derived from GPS/MET refractivities and ECMWF temperatures.  b. ECMWF specific humidity analyses. 
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 Figures 3a and 3b show the standard deviation of specific humidity variations about the zonal 
mean derived from the GPS refractivity using the ECMWF temperatures (GE) and Interpolated 
ECMWF (IE) data sets respectively.  The similarity of the two estimates of zonal variability 
structure implies both data sets have captured the same first order zonal behavior.  The 
difference in the variances and the fractional variance differences (Figures 4a and 4b) reveal 
large regional differences between the two variance estimates.  Given the differences in the 
resolution particularly in the vertical dimension between the GPS occultation data and the TOVS 
data assimilated in the analyses, the differences also indicate a subset of the spatial scales over 
which water varies.   

 

 
Figure 4: Difference between zonal variance of specific humidity estimates, GPS minus ECMWF.   

a. σqG
2 - σqE

2  in (g/kg)2.    b. fractional difference:  σqG
2 - σqE

2  normalized by (σqG
2 + σqE

2)/2 
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3. ERRORS IN THE SPECIFIC HUMIDITY ESTIMATES 
 In this section we attempt to separate the errors in the GE and IE moisture estimates from the 
true variability.  We are able to estimate the GE errors and the IE errors but we have to add 
additional constraints beyond the data alone because we find that the correlations between the 
errors and true variability are significant.  A major finding is the ECMWF moisture estimates are 
2 to 3 times less accurate in the Southern hemisphere. 
 There are several steps involved in isolating the errors. We first write the observed specific 
humidity in terms of the true specific humidity plus errors and further divide each of these into 
their mean and variable contributions.  We then write and calculate the three linear combinations 
of the obervations that would separate the true variability from that of the GE and IE moisture 
errors if the correlations were small.  However, upon examination of the results, we find 
immediately that significant correlations must exist between the data sets, leaving us with 3 
equations and 6 unknowns.  Therefore direct separation of the error terms and true moisture 
variability from the data alone is not possible.  To make further progress, we develop two 
additional constraints.  First we estimate the error in the ECMWF analysis temperatures in the 
upper troposphere in order to estimate the error in the GPS moisture estimates via the approach 
of Kursinski et al. [1995] and Kursinski and Hajj [2001].  The second constraint is the cross 
correlation of the GPS and ECMWF moisture errors which we can estimate from the temperature 
errors common to the GE and IE moisture data sets.  Given these two constraints plus those of 
the data itself, we estimate the error in the ECMWF humidity analyses and find the analyses are 
significantly less accurate in the Southern Hemisphere.  We are also able to estimate the 
difference between the correlation of the GPS moisture errors with the true moisture variations 
and the correlation of the ECMWF errors with the true moisture variations.  The sign of this 
difference suggests the moisture in the ECMWF analyses is significantly smoothing out vertical 
moisture structure.   

3.1 Separation of Errors 
 Each specific humidity estimate can be decomposed into truth plus an error such that the q 
from IE (≡ qE) and that derived from GPS refractivity plus the ECMWF temperatures (≡ qG) can 
be written as  

 '' EEE qqq εε +++=  (4a) 

   'GGqqq εε ++=  (4b) 'G +

where εE and εG are the errors in the IE and GE estimates of q and overbars and primes refer to 
the zonal mean and variable parts of each term respectively.  The variance of the IE and GE q 
estimates and their differences can therefore be written as 

    σqE
2 = q'2 + 2 q'ε'E + ε 'E

2  (5a) 

    σqG
2 = q'2 + 2 q'ε'G + ε'G

2  (5b) 

 Another observable that we can readily estimate is the difference between the q estimates (≡  
∆q) which is defined as 

    ∆q = qG – qE = εG + ε 'G – εE – ε'E  

The variance of ∆q is 

    σ∆q
2 = ε'G

2 – 2 ε'Gε'E + ε'E
2  (6) 

7 



Figure 5 shows the behavior of q∆σ normalized by the zonally averaged q. Perhaps the most 
striking feature of Figure 5 is dramatic difference between the magnitude of the discrepancies in 
the Northern and Southern Hemispheres with the Southern Hemisphere discrepancies being 2 or 
more times larger than those in the Northern Hemisphere.  This hemispheric discrepancy is in 
fact what motivated the present work. 
 

 
Figure 5: The normalized standard deviation of the zonal variations in the difference between the individual GPS 

and ECMWF moisture profiles, (= q∆σ / q ). 
 

 (5a), (5b) and (6) provide three constraints sufficient to isolate the true variability, the error 
in the qG estimates and the error in the qE estimates if the cross-correlation terms are small.  
Three combinations that would do so are  

    1
2 σqE

2 + σqG
2 – σ∆q

2 = q'2 + q'ε 'E + q'ε'G + ε 'Eε'G  (7a) 

    1
2 σqE

2 – σqG
2 + σ∆q

2 = ε'E
2 + q'ε 'E – q'ε'G – ε'Eε 'G ≡ LE  (7b) 

    1
2 – σqE

2 + σqG
2 + σ∆q

2 = ε'G
2 – q'ε'E + q'ε'G – ε'Eε 'G ≡ LG  (7c) 

The behavior of (7a) (not shown) is similar to that in Figures 3a and 3b as expected since (7a) is 
a third estimate of the true variance with a different combination of noise contributions from 
those in (5a) and (5b).   
 Figure 6 shows the behavior of LE defined in (7b).  Perhaps the most significant feature of 
Figure 6 is that it contains significant regions where LE is negative. In these regions, the net 
contribution of the correlation terms in (7b) must be negative and greater in magnitude than the 
variance of the ECMWF moisture analysis errors.  Therefore the correlation terms are large and 
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cannot be ignored.  As a result, we find ourselves with three equations (7a), (7b), and (7c) and 
six unknowns and cannot use the data alone to separate the true specific humidity variance and 
the variance of the ECMWF and GPS noise contributions.   To make further progress we must 
add some additional constraints. We are in fact able to add two further constraints and separate 5 
of the 6 terms in (7a), (7b), and (7c). 

 
Figure 6:  Zonal behavior of LE defined in (7b) in (g/kg)2. 

3.2 High altitude estimate of σqG and equivalent temperature error  

 In trying to estimate the terms in (7a), (7b), and (7c), one additional constraint comes from 
applying the analysis of Kursinski et al. [1995] to estimate the accuracy of the GPS moisture 
estimates.  Kursinski et al. [1995] estimated the accuracy of water vapor derived from GPS-
derived refractivity when temperatures were provided from an independent source such as a 
weather analysis.  The error in water vapor derived in this manner has two primary sources, 
temperature errors which dominate at higher altitudes and refractivity errors which can become 
dominant at low altitudes.  [Kursinski and Hajj, 2001] modified the results of Kursinski et al. 
[1995] to show that the fractional error in specific humidity is related to fractional errors in 
refractivity, temperature and pressure as defined in (8). 

    dq
q ≅ B + 1 dN

N + B + 2 dT
T – B + 1 dP

P  (8) 

where    B = b1 T P
b2 Pw

≅ b1 T mw
b2 q md

.  

md and mw are the mean molecular weights of dry air and water vapor respectively.  The 
temperature error (≡ ε ) at high altitudes where B>>1 causes an error in q (   T qε≡ ) equal to  

    εq ≅ b1 mw
b2 md

εT  (9) 
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indicating that the variance of the error in the GPS moisture results approaches an asymptotic 
value at high altitudes.  In contrast, since moisture variability is of the order of the mean 
humidity, the absolute (as opposed to fractional) variability of tropospheric specific humidity 
must decrease dramatically with increasing altitude. Therfore, as altitude increases, the variance 
of errors in the GPS-derived specific humidity becomes much larger than the true moisture 
variance.  Indeed σqG is observed to have an asymptotic limit of ~0.2 g/kg at high altitudes in 
Figure 3a as expected according to Kursinski and Hajj [2001].  Therefore, since radiances are 
more directly related to relative humidity  [Soden and Bretherton, 1996], analyses assimilating 
TOVS moisture radiances should provide a better estimate of σq than σqG at high altitudes at least 
up to altitudes where the TOVS radiances are sensitive to moisture.  We can therefore utilize the 
high altitude differences between the GE and IE moisture variances as a measure of the variance 
of GE specific humidity errors and then use the approach of Kursinski and Hajj [2001] to 
estimate the high altitude asymptotic error in q and the equivalent temperature inconsistency.   
 The temperature inconsistency equivalent to the specific humidity difference is derived as 
follows.  Consider the situation where qE is known as are the GPS refractivity, NG, and the GPS 
pressure, PG. We can define an equivalent temperature, TEG, which is the temperature that is 
consistent with the observed values of qE, NG and PG and the refractivity equation.  In addition 
we have the estimate of qG derived from NG and PG and the ECMWF temperatures, TE.  Using 
(8), we can relate the difference between the two moisture estimates to the difference between 
the two temperatures as 

 ( )
T

B
qq

qq EGEGE TTqqGE
εεεε −

+=
−

=
− 2  

Since the GPS refractivities have small fractional errors at high altitudes, the error in qG at high 
altitudes is dominated by the ECMWF temperature error.   On the other hand, at high altitudes, 
the errors in qE should be smaller than the errors in qG because the qE errors are proportional to q 
which decreases at high altitudes.  Therefore, at sufficiently high altitudes, 

EEGE TTT εεε ≈−  and  

 ( ) w

d
qqTE mb

mb
Bq
T

1

2

2 ∆∆ ≅
+

≅ σσσ  (10) 

In the derivation of water vapor from refractivity discussed here, pressure is the occultation-
derived hydrostatic pressure above the 230K temperature altitude plus the hydrostatic 
contribution of the analysis temperatures at lower altitudes.   The impact of analysis temperature 
errors on derived pressure are therefore small at altitudes within roughly a half scale height of 
the 230K height.  Therefore the high altitude inconsistency in q is essentially equivalent to an 
inconsistency between the GPS and ECMWF temperature estimates.   
 Figure 7 shows the standard deviation of the equivalent temperature inconsistency derived 
along the 237K mean temperature contour.  Overall, the result is similar to the temperature 
uncertainty of 1.5 K generally assumed for global analyses and assumed in the GPS water vapor 
accuracy prediction of Kursinski et al. [1995].  At low latitudes where temperature variability is 
small, agreement is better, being approximately 1 K.  Larger discrepancies of between 1.5 and 
2.5 K are found at higher latitudes in the Southern Hemisphere.  Kursinski and Hajj [2001] 
found regions where the mean GE relative humidity is negative which implies mean square 
temperature errors of the ECMWF analyses are ~2.8K.  The errors estimated here are somewhat 
smaller but generally in agreement with that estimate lending support to the temperature error 
estimates made here. 
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Figure 7:   Estimated standard deviation of ECMWF temperature errors as a function of latitude 

 
 There is a problem in our temperature error estimation approach near 35oN where the GE and 
IE moisture variances are approximately equal.  The temperature inconsistency at this zone is 
probably similar to that of the surrounding latitudes and we have smoothed latitudinally to 
reduce this effect. 

3.3 Estimation of 2'
Gε  

 Given our estimates of the ECMWF temperature errors, we can proceed to estimate  ε  'G
2 , the 

variance of the errors in qG.  We follow the approach of Kursinski et al. [1995] who showed the 
dominant error contribution in upper regions is due to the analysis temperature errors whereas in 
lower moist regions, refractivity errors can become dominant.  From (8), the GE specific 
humidity error variance is related to the temperature and refractivity error variances 
approximately as 

 
   ε'qG
2

q2 ≅ B+1 2 ε'NG
2

N2 + B+2 2 ε'TE
2

T 2  

We have assumed the errors in the GPS refractivity and ECMWF analysis temperatures are 
independent and, as in Kursinski et al. [1995], we have ignored the contribution of the pressure 
error because it is generally small.  In applying the temperature errors shown in Figure 7, we 
assume the standard deviation of the temperature error does not vary significantly with height.   
 Kursinski et al. [1995] and Healy [2001] found that the fractional refractivity error increased 
at lower altitudes because of the associated increase in horizontal refractivity variations which 
cannot be represented in the abel transform.  The increase was approximately in proportion to the 
increase in specific humidity at lower altitudes.  To take this effect into account, we approximate 
the fractional refractivity error as  

 ( ) ( )[ ] 2/12323
2

2'

102103 −− += xqx
N

NGε  (12) 
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where q is in g/kg.  (12) yields refractivity errors somewhat larger than those estimated by 
Kursinski et al. [1995] in the lower troposphere in order to account for possible receiver tracking 
errors. We truncate (12) at a maximum refractivity error of 2% which is twice the maximum 
refractivity error in the lower troposphere estimated by Kursinski et al. [1995].  We note that our 
estimate of the GPS refractivity errors may be conservative in the Northern Hemisphere  summer 
where Poli et al. [2002] found indications that the results of Kursinski et al. were pessimistic. 
 The resulting latitude versus height dependence of  ε  'G

2  normalized by q  is shown in Figure 
8.  Fractional accuracy is lower in the Southern Hemisphere reflecting the lower mean specific 
humidities and larger temperature errors there.  At low latitudes, the fractional errors reach a 
minimum because of the high mean humidities and relatively small temperature errors.   
 

 
Figure 8:  Estimated fractional standard deviation of GPS specific humidity errors 

 

3.4 Cross-correlation between errors:    ε'Gε'E  

 We have one other constraint we can apply because we know the ECMWF and GPS moisture 
estimates should be correlated because the ECMWF temperature estimates are common to both 
moisture estimates.  At high altitudes, LE is negative at most latitudes.  The cause of this is 
probably related to the large error in the qG estimates at high altitudes as discussed in section 3.2.  
This further suggests that the dominant correlation term in (7b) in the high altitude regions of 
negative LE involves εG'.  In order for the ''

Gεq  term to contribute significantly to the negative 
values of LE observed in the upper troposphere, the ECMWF temperature errors would have to 
be positively correlated with the true moisture variations.  A mechanism to explain this is not 
obvious to us.  On the other hand, it is clear that εG' and εE' will be correlated because the 
ECMWF temperatures are common to both data sets.  We can express the expected contribution 
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of    ε'Gε'E  due to temperature errors using the relationship between TOVS radiances and relative 
humidity developed by Soden and Bretherton [1996] (see the Appendix) which is: 

    ε'qG ε'qE =
b1 mw q

b2 m
1

β T + 0.622 L
R T2 εT

2  (A7) 

where β is the normalized lapse rate (dlnT/dlnP) used by Soden and Bretherton.  (A7) is valid to 
the extent that TOVS data and not radiosondes dominate the moisture analyses which is true 
over most of the globe and that the TOVS data and not the underlying model largely determine 
the analyzed moisture structure.  Note that (A7) is positive in the troposphere which is the 
correct sign to make (7b) negative.  Note also that    ε'Gε'E  scales in proportion to q, a dependence 
which lies between that of  ε  'G

2  which is approximately constant via (9) and  ε  'E
2  which scales 

crudely as q

   'Gε

2 because TOVS radiances are proportional to relative humidity and the fractional 
error in qE increases slowly with height.  The proportionality to q means that at sufficiently high 
altitudes, ε 'E  will become greater than  ε  'E

2  such that LE will become negative consistent with 
Figure 7.   
 

 
Figure 9:    ε'Gε'E in (g/kg)2. 

 
 To evaluate (A7) we use the meridionally varying temperature errors estimated in Figure 7 
producing the ε    'Gε'E  behavior shown in Figure 9.  In Figure 10 where we have added    ε'Gε'E  to LE 
shown in Figure 7, we see that adding our estimate of the error cross-correlation term reduced or 
eliminated most of the high altitude negative regions of LE shown Figure 7.  Therefore, our 
simple analytic expression, (A7), seems to explain most of the high altitude correlation.  Note 
that in deriving (A7) we assumed no correlation between T and the brightness temperature which 
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would be incorrect if the water vapor radiances are used to constrain both constituent density and 
temperature in the analyses. 

 
  Figure 10:   LE +    ε'Gε'E in (g/kg)2.  

3.5 Estimation of  ε  'E
2  

 The additional constraints of the error cross-correlation in (A7) and the estimate of  ε  'G
2  

discussed in section 3.4 now allow us to estimate the variance of the ECMWF humidity analyses 
via (6).  Figure 11 shows the resulting estimate of the square root of  ε  'E

2  normalized by q .  The 
uncertainty in the occultation-derived refractivity error in the lower troposphere in (12) and its 
impact on the estimate of  ε  'E

2  have little influence on the estimate of  ε  'E
2 .  Figure 11 reveals that 

the accuracy of the ECMWF analyzed moisture is distinctly worse in the Southern Hemisphere 
that is responsible for most of the hemispherical discrepancies evident in Figure 5.  
 We see that the fractional error of the ECMWF moisture is ~25% near the top of the 
planetary boundary layer (PBL) over much of the globe (~45oS to 60oN).  North of 10oS, the 
~50% accuracy contour is centered near 6 km altitude.  The similarity of this to the diagonal 
terms of error covariances typically assigned to global moisture analyses [e.g. Kursinski et al., 
2000] lends credence to our result.  In marked contrast, south of 10oS the fractional errors of the 
analyzed moisture near 6 km altitude are typically more like 100%. 50% errors in moisture are 
found at 1 to 2 km altitude. These results indicate that moisture errors over much of the Southern 
Hemisphere are factors of 2 to 3 larger than the assumed analysis errors confirming and 
quantifying the long-held assertion that analyzed moisture errors must be larger in the Southern 
Hemisphere due to the lack of moisture information from radiosondes.   
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Figure 11:   Estimated normalized  standard deviation of the ECMWF specific humidity errors 

 

3.6 Estimation of q    'ε'G  - q    'ε'E   

 The two variance estimates from (5a) and (5b), the variance of the specific humidity 
differences from (6), plus the additional constraints from the estimate of 2'

Gε  and the error cross-
correlation (A7) combine to provide 5 constraints.  This is insufficient to uniquely define    'ε'Gq  
and    q'ε'E  independently but adequate to characterize their difference, q    'ε'G  - q    'ε'E  via (7b) or 
(7c).  The resulting zonal structure of    'ε'Gq  -    'ε'Eq  and its normalized form are shown in Figures 
12a and 12b.   
 Perhaps the most significant feature in Figure 12 is the fact that q    'ε'G  - q    'ε'E  is positive 
throughout most of the troposphere suggesting that a combination of negative q    'ε'E  and positive 

   q'ε'G  exists in general.  A positive correlation implies the GPS data overestimates variations 
when they occur.  Although it is not obvious, it is at least conceivable that occultation data could 
overestimate the true variations in certain situations and create some positive correlation through 
the data's high sensitivity to sharp vertical refractivity gradients.   
 A negative correlation between the true variations and the errors is expected whenever 
observations or analyses smooth over real variations.  Figure 13 shows a schematic example of 
such behavior.  The solid line on the right of Figure 13 shows the true specific humidity profile 
which includes a perturbation (shown as the dotted line to the left) relative to the mean at 4 km 
altitude.  The dotted line on the right shows the vertically-smoothed, low resolution estimate of 
the truth.  The solid line on the left shows the error in the smoothed profile which is the 
difference between the smoothed profile and the truth.  The anti-correlation between the true 
perturbation and the error in the smoother profile is quite evident near 4 km altitude.  As the 
example in Figure 13 shows, smoothing out the true behavior systematically produces a negative 

'' qq ε  term.  Since TOVS provides 3 moisture radiances that span much of the troposphere 
whereas moisture is known to vary on much smaller vertical scales, a negative correlation 
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between the moisture analysis errors and true variations is expected.   Our results reveal 
indications of the anti-correlation because the GPS observations provide much higher vertical 
resolution than TOVS.   
 The smoothing in the horizontal dimension associated with the ~250 km along-track 
averaging interval of the occultations can also produce a negative correlation between errors and 
true variations.   However, the horizontal resolution of the ECMWF analyses is probably not a 
lot better than the along-track averaging of the GPS observations and the generally positive sign 
of    q'ε'G  - q    'ε'E  suggests the vertical smoothing of the ECMWF analyses is dominating the 
behavior of q   'ε' G  - q    'ε'E .  We will discuss implications of the    'ε'Gq  -    'ε'Eq  correlation behavior 
further in Section 5. 

 

 
Figure 12.  The difference between the correlation between the GPS moisture errors and true moisture variability 

and that between the ECMWF errors and the true variability.  a. 
EG q '''' εε −q  in (g/kg)2.  b. normalized by the q 

variance. 
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Figure 13:  Schematic example of how vertical smoothing produces a negative correlation between the error and the 

real perturbation. 
 

 The magnitude of q    'ε'G  - q    'ε'E  is quite large amounting to 25 to 50% of the zonal variance of 
the atmospheric moisture.  This suggests that the ECMWF moisture analyses are missing a large 
fraction of the moisture variations in the vertical dimension.   

4. Improved Estimate of the True Zonal Moisture Variability, σq 

 We can now utilize the estimates of  ε  'G
2

 and  ε  'E
2 and the various correlations to derive a better 

estimate of the true moisture variability.  We write the optimal estimate of q (≡  qO) as a linear 
combination of qG and qE 

   qO = A qG + 1 – A qE  (13) 

The non-mean portion of the error in (13) is ( )''''
EGEo A εεεε −+=  and the error variance of (13) 

is therefore 

 ( ) ( ) ( ) 22'''2'2''2'''2'2' 22 yEGEEEGEGEEo AAAA ∆+−+=−+−+= σεεεεεεεεεεε  (14) 

The optimal estimate of the true variance is obtained by minimizing the magnitude of (14).  Note 
that depending on the magnitudes and signs of the correlation terms, (14) can represent one of 
two situations, the first where 2'

oε  is strictly positive and the second where 2'
oε  can be positive or 

negative.  In the first case, the solution for A that minimizes 2'
oε  is   

 2

''2'

q

GEEA
∆

−
=

σ
εεε  (15) 
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 In the second case there are in general two values of A that are solutions to 2'
oε  = 0. The 

values are 

 
( )

2

2'22''2'''2'

q

EqGEEGEEA
∆

∆−−±−
=

σ

εσεεεεεε
 (16) 

We choose the sign in (16) based on the error variances.  If  ε  'E
2  >  ε  'G

2 , the positive sign is chosen 
giving more weight to qG. Otherwise, the negative sign is chosen increasing the weight of qE.   

 

 
Figure 14:  Optimal estimate of σqo in g/kg derived from weighted sum of GPS and ECMWF q estimates.  

a. σqo in g/kg.  b. σqo/ q . 
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 Figure 14a shows our best estimate of the square root of 2'
oq = σqo

2 and Figure 14b shows σqo 
normalized by the zonal mean q.  Figure 15 shows the zonal dependence of the weighting factor, 
A, used to derive qo.  Figure 16 shows the estimated improvement of qo over qE represented as 
the ratio of the standard deviation of the qo error to the error in the original qE estimate of q.  The 
error has been reduced to less than 50% of the ECMWF analysis error over much of the 
troposphere.  The improvement near the surface is often not quite as large because the ECMWF 
errors are smallest near the surface.  Despite the low humidities in the wintertime Southern 
Hemisphere, the improvement in the Southern Hemisphere is larger than many predictions [e.g. 
Healy and Eyre, 2000] because our analysis indicates that the ECMWF moisture errors in the 
Southern Hemisphere are significantly larger than their Northern Hemisphere counterparts. 

 
Figure 15: Weighting factor, A, defined in (13)-(16) and used to determine the optimal estimate of q. 

 
Figure 16:   Ratio of standard deviation of minimum moisture error to standard deviation of ECMWF moisture error 
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5. DISCUSSION OF RESULTS 

 We now discuss briefly the zonal variability structure armed with our improved 
understanding of the noise/accuracy.  A full discussion of the explanation for the zonal 
variability requires a 3D examination of the moisture structure which is beyond the scope of the 
present effort. 
 The latitude versus height structure of the standard deviation of specific humidity variations 
about the zonal mean reveals a distinct pattern with a minimum centered roughly on the ITCZ 
near 5oN and a maximum to the north and to the south peaked in the subtropics.  This bi-modal 
meridional structure in zonal variability of q has been described by Pexioto and Oort [1992].  
The variability seen here is somewhat larger.  The ITCZ is readily apparent as a region of low 
zonal variability throughout the vertical range of the data, particularly in terms of the fractional 
variability (Figure 14b).  At the ITCZ, the mean relative humidity plus the fractional standard 
deviation of the moisture variations sum to about 80%.  Thus the typical conditions in the ITCZ 
while more moist than the regions to the north and south are not often at saturation at least at the 
scales resolvable by the ECMWF and GPS data.  This is presumably because the convective 
upwellings cover a small fraction of the tropical area. 
 The northern and southern variability maxima correspond roughly to the subtropical zones of 
subsiding air.  The high variability reflects longitudinal variations in the specific humidity.  Both 
peaks in moisture variability extend upward to at least 10 km altitude.   The Northern maximum 
peak is centered between 20oN and 25oN in the lower troposphere and shifts somewhat 
northward at higher altitudes.  The northward shift and more meridionally spread maximum at 
higher altitudes likely reflects the influence of the Indian-Asian monsoon at higher altitudes.  In 
the Southern Hemisphere, there is a corresponding maxima between 15oS and 20oS below 2.5 
km altitude which shifts distinctly equator-ward to 0 to 10oS at higher altitudes.  The greatest 
variability occurs between 10oS and 20oS below 2.5 km altitude near the tradewind inversion in 
the southern descending branch of the Hadley circulation and some of the large moisture 
variability may be contributed by variations in the tradewind inversion height.  
 We note that the fractional variations are significantly smaller near the surface than in the 
free troposphere (Figure 14b). We also note that while the absolute variability is generally 
smaller in the Southern Hemisphere (Figure 14a), the fractional variability is actually larger in 
the Southern Hemisphere (Figure 14b).  In terms of fractional variability (σq/ q ), the Northern 
and Southern peaks are greater than 100% and lie between 6 and 10 km altitude.  The southern 
fractional variability peak is distinctly southward from the absolute variability maximum 
associated with an interval of very dry air near 20oS in the mid and upper troposphere.  In 
regions where the standard deviation of the moisture variations divided by the zonal mean 
moisture is ~100% or more, the moisture distribution must be significantly skewed toward the 
positive end.  That is the tail of the distribution must be longer on the positive side of the mean.  
Therefore, there must be a significant number of moisture structures whose specific humidity is 
more than 1σ greater than the mean. 
 The differences between the GPS and ECMWF variability estimates in Figure 4 deserve 
some attention.  At low latitudes, σqG is greater than σqE (Figure 4) over much of the tropics and 
subtropics particularly below 4 km altitude.   The variance difference is large, being 20 to more 
than 50% of the average of the GE and IE variance estimates.  Based on the positive sign of    'ε'Gq  
-    q'ε'E  through much of this region, it also appears that there is significant negative correlation 
between the ECMWF errors and the true moisture variability.  This suggests that σqG is greater 
than σqIE because substantial variations in humidity exist at vertical scales better resolved in the 
occultation limb-viewing geometry than in the TOVS radiances and ECMWF analyses.   
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 In the interval between 50oN and 70oN, σqE is greater than σqG and q    'ε'G  - q    'ε'E  is negative.  
This suggests the GPS results may be smoothing our real behavior presumably in the horizontal 
dimension.  This could indeed be the case if the ECMWF moisture information is coming 
primarily from radiosondes which are relatively densely spaced in this latitude band. 
 Over a large fraction of the winter storm region in the Southern Hemisphere, σqIE is greater 
than σqG with the largest discrepancy occurring near 35oS.  The discrepancy suggests a 
combination of overestimate by the ECMWF analyses and underestimate by the occultation 
results.  Horizontal smoothing associated with the ~250 km averaging occultation limb-viewing 
geometry could produce such an underestimate.  However, the horizontal correlation length of 
moisture associated with the synoptic scale winter storm systems is generally large which 
occultations should generally be able to resolve.  Furthermore, if horizontal smoothing were the 
dominant source of the variance difference, the sign of    'ε'Gq  -    'ε'Eq  would be negative and our 
estimate of q    'ε'G  - q    'ε'E  is generally positive in this region suggesting that the variability bias is 
due to an overestimate of variability in the analyses.  This conclusion is somewhat surprising 
given concerns that IR observations will miss extremely moist events associated with clouds and 
will therefore underestimate variability.  However, the actually behavior of the analyses depends 
on what the underlying analysis model does in the absence of observations. 

6. SUMMARY AND CONCLUSIONS 

 We examined the zonal variability of moisture analyses over a two week period in June-July 
1995 using the ECMWF humidity analyses and water vapor derived by combining GPS/MET 
refractivity and ECMWF temperature.  This effort complemented our previous examination of 
zonal mean moisture [Kursinski and Hajj, 2001].  We found that the zonal variability of the 
ECMWF and GPS moisture results (defined as the standard deviation about the zonal mean) 
were similar with GPS observing larger variations at low latitudes and ECMWF generally seeing 
somewhat larger at higher latitudes.  We found that large discrepancies existed between the 
individual profiles particularly in the Southern Hemisphere.  Our effort here focused largely on 
untangling the error contributions to understand the cause of the large discrepancies.   
 We found there are significant correlations between the errors themselves and between the 
errors and the true moisture variability.  Because we found significant correlation terms, to 
separate the error contributions and the true variability we had to add two extra constraints, 
estimate of GPS moisture accuracy and the correlation between the GPS and ECMWF moisture 
estimates.  To estimate the GPS moisture accuracy, we estimated the standard deviation of the 
ECMWF temperature errors in the mid-to upper troposphere based on discrepancies between the 
GPS and ECMWF results.  We found that the standard deviation of ECMWF temperature errors 
were ~1.5 K in the Northern hemisphere, ~1K at low latitudes and 1.5-2.5K over much of the 
Southern Hemisphere, values that are generally consistent with expectations.  We then combined 
the temperature error estimate in combination with the approach of Kursinski et al. [1995] to 
estimate the accuracies of the moisture estimates derived from the GPS occultation data.   
 To estimate the correlation between the GPS and ECMWF humidity errors due to the 
common ECMWF temperature error, we derived an expression based upon the simplified 
radiative transfer equation of Soden and Bretherton [1996] that relates relative humidity, and 
brightness temperature.  The magnitude of the resulting error cross-correlation explained most of 
the observed high altitude error cross-correlation supporting the validity of the expression.   
 Using the estimates of the error cross-correlation term, the GPS error and the observations 
themselves, we were able to estimate the error in the ECMWF humidity analyses.  We found the 
standard deviation of ECMWF moisture errors in the Northern Hemisphere are in general 
agreement with the diagonal terms of error covariances used by global data assimilation systems 
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[e.g. Kursinski et al., 2000] with ~25% accuracies near the surface increasing to ~50% in the 
mid-troposphere.   However, the ECMWF moisture analysis accuracies were dramatically worse 
south of the equator with errors typically 2 to 3 times worse than their Northern Hemisphere 
counterparts.  
 We also discovered that significant correlations exist between the data errors and the true 
moisture variability. Specifically we found that    'ε'Gq  -    'ε'Eq  was positive over most of the 
troposphere and its magnitude was 25 to 50% of the actual specific humidity variance over most 
of the troposphere.  We argued that the simplest and most obvious explanation for this behavior 
is the ECMWF errors are anti-correlated with true variations because they are smoothing out 
significant vertical variations in the moisture structure.   This further suggests that the reason for 
larger moisture variability in the GPS results at low latitudes is the ECMWF vertical smoothing 
is removing a substantial fraction of the true variability.    
 Based on our estimates of the GPS and ECMWF errors, we found that inclusion of the GPS 
occultation data will reduce the ECMWF moisture errors by factors of 2 to 3 over much of the 
lower half of the troposphere.  The impact in the Southern (winter) Hemisphere was larger than 
anticipated because of the substantially lower ECMWF accuracies we found there. 
 The latitude versus height structure of the specific humidity variations is generally similar to 
that described by Peixioto and Oort [1992] with a distinct minimum at the ITCZ and relative 
maximum variability to the north and south centered approximately in the subtropics.  Fractional 
variability is substantially larger 6 to 10 km above the surface in the free troposphere.   
 At low latitudes, the occultation data revealed moisture variances 20 to 50% higher than the 
ECMWF analyses.  In contrast, in the Southern Hemisphere, the ECMWF humidity analyses 
exhibit more variability than the GPS results.  The cause for the discrepancy could be an 
overestimate in the analyses or an underestimate in the GE results due to horizontal smoothing.  
Since the sign of q    'ε'G  - q    'ε'E  is positive, the variability difference may be due to an overestimate 
of variability in the ECMWF analyses.  There is also an interval in the Northern hemisphere in 
which the ECMWF variability is larger than the GPS estimates and    'ε'Gq  - q    'ε'E  is negative.  It 
may be that the assimilation of radiosonde data by the ECMWF analyses explains the results in 
this region.  As a result, the ECMWF analyses may contain more variability at smaller horizontal 
scales than the GPS observations which would explain both σE being greater than σG and    'ε'Gq  - 

   q'ε'E  being negative.   
  These results are for the 1995 version of the ECMWF analyses.  We have begun 
extending this analysis of global moisture variability to utilize the much larger data sets being 
generated by the GPS occultation receivers on the CHAMP and SAC-C spacecraft [Hajj et al., 
2002].  The larger and improved data sets should allow a full 3D examination by season together 
with still higher GPS vertical resolution through the application of backpropagation and 
canonical transform concepts [e.g. Gorbunov, 2002] which improve the vertical resolution of the 
GPS results to ~200 m.   
 
 

APPENDIX:   CORRELATION BETWEEN SPECIFIC HUMIDITY ESTIMATES 
FROM GPS AND ECMWF ANALYSES. 

 We are interested in estimating the accuracy of the ECMWF humidity fields given the 
ECMWF and GPS results and estimated GPS accuracy.  The mean square of the difference 
between the GE and IE specific humidity (q) results is 
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The mean square error of the ECMWF humidities is 

    εE
2 = qG – qE

2 – εG
2 + 2 εGεE  (A1) 

Were the GPS and ECMWF moisture data sets independent, the correlation term would be zero 
and could be ignored.   Humidity derived from refractivity uses temperature from weather 
analyses such as the ECMWF global 6 hour analyses and the accuracy of the water vapor results 
depends on the accuracy of the ECMWF temperature.  The global humidity field in the ECMWF 
analyses is derived largely from TOVS radiances which requires knowledge of temperature as 
well.  Therefore errors in the two humidity estimates are correlated and ''

EGεε ≠ 0.   
 Following the approach of Kursinski et al., [1995] and Kursinski and Hajj [2001], the 
dependence of specific humidity derived from GPS observations on refractivity, temperature  
and pressure is  

 
  dq

q = B + 1 dN
N + B + 2 dT

T – B + 1 dP
P  

where B = b1 T mw/b2 q m and b1 = 77.6 K/mbar and b2 = 3.73x105 K2/mbar. Refractivity does 
not depend on the analysis temperature.  Pressure does.  However, near the 230 K isotherm, 
pressure is derived primarily from the occultation refractivity data.  At lower altitudes it will turn 
out that the contribution of the correlation term is insignificant and the pressure contribution can 
therefore be ignored.  Further, near the 230 K isotherm, B >> 1 so that 

 ( )
mqb
mb

T
B

Tq
q w

2

12
≅

+
≅

∂
∂  (A2) 

Therefore the absolute (versus fractional) error in q due to temperature error is linearly 
proportional to the error in T with a scale factor of ~0.13 g kg-1K-1. 
 To avoid the complexity of the radiative transfer coupling between humidity and temperature 
in the analyses, we will utilize the framework developed by Soden and Bretherton [1996], for 
interpreting GOES and TOVS radiances in terms of humidity.  Conceptually, brightness 
temperature represents a layer average relative humidity that can be represented as  

 

   a + b Tb = loge
r po

β cos θ  
where the variables are brightness temperature Tb, relative humidity r, normalized lapse rate β, 
reference pressure po which is equal to the pressure at the 240 K isotherm divided by 300 mbar 
(po = P[T=240 K]/300 mbar).  The constants, a and b, depend on the TOVS channel being used.  
We are interested in how derived humidity depends on temperature. Since Tb is observed, β is 
roughly constant and θ is determined by observational geometry, only r and po  can vary with 
temperature, T.  Therefore as T is varied, the product, r po, must remain constant.   

 
  dr

r dT = – d po
po dT  

r can be written in terms of q as 

23 



 
  r = e

e* = q P m
e* mw  

where e is vapor pressure, e* is saturation vapor pressure, P is the air pressure, m is mean 
molecular mass of the air and mw is the mean molecular mass of water vapor.  Therefore the 
variation of r with T is  

 
  dr

r dT = dq
q dT – de*

e* dT  
The variation of q with T is  

 
  dq

q dT = dr
r dT + de*

e* dT = – d po
po dT + de*

e* dT  (A3) 
po = P(T)/300 mbar.  To estimate the change in po due to a temperature error we note that Soden 
and Bretherton argue that the normalized lapse rate β = P/T dT/dP = dlnT/dlnP can be taken as 
constant such that T and P are related approximately as 

 

   T
Tref

= c P
Pref

β

 
The case we are interested in is the change in P(T) when Pref and T are held constant and Tref 
=T(Pref) is changed.  The resulting change in P(T) is 

 
   dP

P = – 1
β

dTref

Tref  
so that 

 
   d po

po dTref
= dP

P dTref
= – 1

β Tref  (A4) 
Concerning the second term on the RHS of (A3), from the Clausius-Clapeyron relation 

 
  de*

e* dT = 0.622 L
R T 2

 (A5) 

where R is the dry gas constant (= 287 J kg-1 K-1) and L is the latent heat of sublimation or 
evaporation. Using (A4) and (A5), (A3) becomes 

 
   dq

q dT = 1
β T + 0.622 L

R T 2  (A6) 
Note that the second term is roughly 5 times greater than the first term. Note also that the 
variation in the fractional change across the troposphere in q due to an error in T is small in 
comparison to the variation in the GPS estimate. 
 Combining (A2) and (A6), the correlation term in (A1) can be written as 

    εG εE
q2 = b1 mw

b2 m q
1

β T + 0.622 L
R T 2 εT

2  (A7) 

Note that all terms are positive so the correlation is positive. With the exception of q, the 
variables on the RHS of (A7) vary little with height, and the fractional correlation term error will 
grow exponentially with height with the scale height of water vapor.  Inserting (A7) into (A1) 
yields 
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    εE
2 = qG – qE

2 – εG
2 + 2

b1 mw q
b2 m

1
β T + 0.622 L

R T 2 εT
2  (A8) 

To estimate  ε   E
2 , we use the data to calculate the first term on the RHS of (A8) and estimate the 

second and third terms based on apriori information as well as the comparison of the two data 
sets. 
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