1. INTRODUCTION

During the last several years Pacific Northwest National Laboratory (PNNL) has been investigating the decay of turbulence in the atmospheric boundary layer during the transition from afternoon convection to evening stable stratification. As part of that study we have worked to extract the dissipation rate of turbulence kinetic energy from a 915 MHz wind profiling radar. Our approach has followed the methods of Gossard et al. (1998) and White et al. (1999) for relating the width of the wind peak in the radar range-gate spectra to dissipation.

Because we are interested in the turbulence decay process, it is important to resolve temporal changes of the turbulence as finely as possible. Ideally, we wish to obtain credible dissipation measurements from individual beam cycles. This requires both accuracy and automation in the algorithm that resolves the profiler Doppler spectral peaks. This motivated our use of the National Center for Atmospheric Research’s (NCAR’s) Improved Moment Algorithm (NIMA) to extract moments from wind profiler data (Cornman et al. 1998; Morse et al. 2002; Goodrich et al. 2002).

To verify our calculations of dissipation from the profiler, we sought opportunities for intercomparison with dissipation measured by other platforms. As an initial effort, PNNL carried out a brief pilot study by operating a sonic anemometer at the 120-m level on this tower, which placed it near the center of the lower range gate of the profiler. The anemometer sampling rate was 10 s⁻¹.

2. THE OBSERVATIONS

2.1 HMS Tower

The Hanford Meteorological Station (HMS), part of the University of Energy’s Hanford Site in south-central Washington state, includes among its facilities a 122-m instrumented tower. In April 2000 the 915 MHz wind profiling radar was located approximately 500 m away from this tower. This radar is a four-panel, five-beam phased array system. The beam width is 9°, and the zenith angle of the off-zenith beams is 23.6°. The profiler was operated in a single mode. The vertical resolution was 55 m, and the profiler completed one beam cycle in 4.25 min.

For several days during the month, PNNL operated a sonic anemometer at the 120-m level on this tower, which placed it near the center of the lowest range gate of the profiler. The anemometer sampling rate was 10 s⁻¹.

2.2 CASES-97

CASES-97 (LeMone et al. 2000; Yates et al. 2001) was a field program that was part of a continuing effort to understand the diurnal variation of the boundary layer as influenced by surface processes and to investigate appropriate scaling for precipitation and soil properties. The field campaign used the Atmospheric Boundary Layer Experiments facility (ABLE; Coulter et al. 1998) in the Walnut River watershed in southeastern Kansas. Data from this program were supplied by numerous systems, including wind profilers and aircraft.

The two 915 MHz wind profilers used in this analysis are operated by Argonne National Laboratory as part of the ABLE array. One wind profiler, using a four-panel phased-array antenna, is installed at Whitewater, Kansas. This system is essentially identical to the profiler operated by PNNL on the Hanford Site. The other profiler uses a nine-panel antenna and is installed at Beaumont, Kansas. Because of the larger size of the antenna, the beam width for the Beaumont profiler is 7° in contrast to 9° for the four-panel systems. The profilers operated continuously during the CASES-97 field program.

Two research aircraft, a King Air operated by the University of Wyoming and a Twin Otter operated by the National Oceanic and Atmospheric Administration (NOAA), also participated in the CASES-97 field program. These aircraft flew straight-and-level flight legs at multiple altitudes in the boundary layer for the purpose of measuring profiles of turbulence variables. The legs were typically several tens of kilometers in length. The three wind components were sampled by the King Air at 50 s⁻¹, and the Twin Otter at 40 s⁻¹. The sampling airspeed was 85-90 m s⁻¹ for the King Air and 60-65 m s⁻¹ for the Twin Otter.
3. TREATMENT OF THE DATA

3.1 Sonic Anemometer

Dissipation was extracted from the sonic anemometer on the HMS Tower using the inertial subrange of the velocity power density spectra. Spectra were computed from the time series over half-hour intervals after subtraction of a linear trend. We make use of the power-law form of the inertial subrange for a one-dimensional velocity spectrum

\[F_i(k_i) = \alpha_i \varepsilon \frac{S}{2\pi} k_i^{2\varepsilon} k_i^{-5/3} \]

where \(i = 1, 2, \) or 3 represents the along-wind, crosswind, or vertical velocity component, \(\alpha_i \) is the Kolmogorov constant appropriate to the component, \(\varepsilon \) is the dissipation rate, and \(k_i \) is wavenumber in the longitudinal (along-wind) direction. The representation of the spectrum in the frequency domain is

\[F_i(f) = \left(\frac{S}{2\pi} \right)^{1/2} \alpha_i \varepsilon \frac{S}{2\pi} f^{2\varepsilon} f^{-5/3} \]

where \(S \) is the mean wind speed over the half hour. We integrated the individual spectra from 2Hz to 5Hz (Nyquist frequency), summed the results from each component, used \(\alpha_1 = 0.52 \) and \(\alpha_2 = \alpha_3 = (4/3)\alpha_1 \), and solved for the dissipation rate.

3.2 Aircraft

Processing data from the aircraft was similar to the method for the sonic anemometer except that we were able to use a decade or more of the power spectrum and only dissipations based on the longitudinal velocity \(u \) were used. In this case \(S \) is the mean true air speed for a flight leg, and \(k_i \) is wavenumber along the flight path. Dissipation rate was calculated for each straight-and-level flight leg.

Comparing the aircraft and profiler data was not straightforward, because the aircraft legs were flown in multiple locations and not necessarily near a profiler, although flight legs tended to be nearer to Beaumont than to Whittier. To accomplish the comparison, therefore, we grouped legs by altitude, creating a single average for a flight day by altitude bin. Using the average time for each group, we created an average dissipation rate for each profiler for an hour centered on the average aircraft time for a given altitude. The intent is that the averaging will minimize differences due to space and time variations of turbulence in the boundary layer.

3.3 Wind Profilers

Because the practical extraction of dissipation rate from profilers is a relatively new development, we provide a more detailed outline of that process. Profiler-derived dissipation rate depends on the broadening of the Doppler spectral peaks by isotropic eddies in the scattering volume illuminated by the radar pulses. The width of the spectral peaks represents the distribution of velocity about the mean radial velocity of the scattering volume. The velocity variance of this distribution is a combination of effects of the isotropic eddies and other non-turbulent effects, such as mean wind shear across the beam, mean wind blowing transverse to a beam of finite width, and the effect of low-frequency variations in the wind during the dwell time for each beam. These effects may be summarized, following White et al. (1999), with

\[\sigma_i^2 = \sigma_s^2 + \sigma_a^2 + \sigma_{TV}^2 \]

where \(\sigma_i^2 \) is the total variance measured in the Doppler spectral peak, \(\sigma_s^2 \) is the contribution from shear across the radar beam, \(\sigma_a^2 \) is a contribution depending on antenna properties (which is significant only for scanning radars), and \(\sigma_{TV}^2 \) is the radial velocity variance in the sampling volume. For \(\sigma_s^2 \) we have followed Gossard et al. (1998) in using

\[\sigma_s^2 = \frac{V_T^2 \theta_s^2}{2 \ln 4} \]

where \(V_T \) is the wind velocity transverse to the beam and \(\theta_s \) is the radar beam half-width in radians. The contribution \(\sigma_{TV}^2 \) consists of

\[\sigma_{TV}^2 = \sigma_{point}^2 - \sigma_{vol}^2 + \sigma_T^2 \]

where \(\sigma_{point}^2 \) is radial velocity variance that would be measured by a point sensor, \(\sigma_{vol}^2 \) is variance of volume-averaged radial wind, and \(\sigma_T^2 \) is the variance resulting from low-frequency variations in the wind during a beam’s dwell time \(T \). White et al. (1999) have modified an expression for \(\sigma_{point}^2 \) originally derived by Frisch and Clifford (1974) in order to include the effect of \(\sigma_T^2 \). Their result is

\[\sigma_{TV}^2 = \frac{\alpha \varepsilon}{4\pi} l \]

where \(\alpha \approx 1.6 \) is a Kolmogorov constant, and \(l \) is an intractable triple integral. White et al. showed that \(l \) could be well represented in spherical coordinates by

\[l = 12\pi \left(\frac{2}{3} \right) \int_0^{\pi/2} \sin^3 \phi \left(b^2 \cos^2 \phi + a^2 \sin^2 \phi + \frac{l^2}{12} \sin^2 \phi \cos^2 \phi \right)^{\frac{5}{3}} \]

which can be evaluated numerically. (We used the function “db1quad” in the commercial software package MATLAB.) The constants \(a \) and \(b \) are related to beam geometry (White 1997), with

\[a = \frac{R \theta_L}{\sqrt{2 \ln 2}} \quad \text{and} \quad b = 0.3 \Delta R \]
where ΔR is range gate resolution, $L = UT$, where U is mean wind speed at a particular range gate, and T is the dwell time. Eqn. 3, after correcting for the shear term (4), yields σ^2_z. This in turn yields ϵ from (6) after evaluating I numerically. This procedure, mapped by Gossard et al. (1998) and White et al. (1999), has also recently been used by Jacoby-Koaly et al. (2002). On the occasions where the subtraction of σ^2_z yielded a negative value, we neglected the estimate, assuming that the dissipation was too small to be extracted from profiler noise. This procedure was also followed by Jacoby-Koaly et al.

4. COMPARISON

4.1 Profiler—HMS Tower

Fig. 1 shows a diurnal cycle of dissipation rate from the lowest range gate of the profiler and from the sonic anemometer, which, at 120 m, was nearly centered in this range gate. This figure shows several characteristics of the April 2000 comparison. First, the diurnal cycle of dissipation rate is evident in both time series. In this particular case, both instruments show a very similar pattern of the increase of dissipation rate in the morning to comparable maximum values around midday. On numerous but not all other days (not shown), maximum values of dissipation from the profiler were larger than those from the sonic. Second, the decrease of dissipation rate in the afternoon was more abrupt from the sonic than from the profiler. This was a common feature during the April 2000 measurements. Finally, the nighttime values of dissipation rate were typically much smaller from the sonic than from the wind profiler.

There were encouraging aspects to this comparison, but there were also obvious disagreements between the instruments. The generally larger values of dissipation from the profiler could, of course, result from still-inadequate removal of non-turbulent broadening of the Doppler spectral peaks. Meteorological factors could also contribute, though. For example, at 120 m the sonic anemometer is often within the surface boundary layer, where gradients of dissipation rate are large and nonlinear. Because the corresponding profiler range gate extends from 90 m to 150 m above the surface, it is possible that the profiler values are skewed by large values of dissipation below the height of the sonic anemometer. This would seem to be a particular possibility when turbulence is decaying in the afternoon and could explain the earlier drop in dissipation measured by the sonic in Fig. 1. Thus we sought a further comparison between profiler-derived dissipation and airborne measurements well away from the surface.

4.2 Profiler—Aircraft

Fig. 2 shows profiles of dissipation rate derived from the aircraft and profilers for four days during CASES-97. These figures are presented in chronological order. It should be noted that the lowest aircraft flight legs were lower than the lowest profiler range gates. Further, in the King Air data from 20 May, the lower point of the profile occurred after 0000Z, and we had not obtained profiler data from the succeeding day at the time of this writing.

There are several features that are common to all of the profiles. First, the qualitative variation of dissipation with height is generally the same in the aircraft and radar profiles. Fig. 2b, in particular, shows that the profilers and the aircraft have the same qualitative structure for dissipation values of the order 10^{-4} m2 s$^{-3}$. This provides an indication that the lower bound of measurements from the profilers is small enough to capture the typical range of dissipation within the boundary layer. Second, there is a tendency for the lowest range gates of the profiler to indicate a decrease in dissipation rate. This is contrary to the expected behavior of turbulence in the atmosphere and also at odds with the aircraft data. Finally, despite the qualitative similarities, the profiler values of dissipation are consistently larger that those from the aircraft. Moreover, the dissipation measured by the Whitewater profiler is consistently larger than that from the Beaumont profiler.

Fig. 3 shows the data from the profiles of Fig. 2 expressed as a scatterplot of profiler versus aircraft data. This figure reveals clearly the consistently larger values of dissipation from the profilers. The figure also shows, however, the near proportionality between the profilers and the aircraft. The fitted curves are of the form $y=ax$. For the Beaumont profiler, $a=1.4$; for Whitewater, $a=2.3$. The variances explained by each of the fits are 86% and 84%, respectively.

This last result is rather encouraging because it suggests the problem is not a high noise threshold and that a simple correction factor may be adequate as a last correction to obtain good dissipation values from the profiler. We have not yet determined the reason for this disagreement between the profilers and the aircraft. It is interesting that Jacoby-Koaly et al. (2002) obtained a very similar result, which they attributed to the Hanning
window and other contributions from radar signal processing. Their comparisons with aircraft measurements suggested that this effect was 20% of the raw σ_1^2. Since dissipation is proportional to the cube of this value, after correction for wind shear broadening the slopes of our best-fit curves suggest that at Whitewater and Beaumont we would need a correction to the standard deviation of 32% and 12%, respectively, which is comparable to Jacoby-Koaly et al.

5. SUMMARY AND CONCLUSIONS

We have used a sonic anemometer mounted on a tall tower and airborne measurements to derive the dissipation rate of turbulence kinetic energy for comparison with observations from several wind profiling radars. We have used the NCAR Improved Moment Algorithm to identify Doppler spectral peaks and calculate their moments. In general, this algorithm provides fairly stable moment estimates from single profiler beam cycles. The comparison with the sonic data allowed us to make inferences regarding the profiler’s observations of the diurnal cycle of turbulence. The comparison with aircraft data showed the performance of the profiler over the depth of the mid-to-late-afternoon convective boundary layer.

The PNNL profiler very clearly captured the diurnal cycle of dissipation rate. Values of dissipation calculated from this system, however, tend to be larger than those measured in situ by a sonic anemometer, despite efforts to remove effects of non-turbulent broadening of spectral peaks. Comparisons of ABLE wind profilers that

Figure 2. Comparisons between airborne and profiler measurements of dissipation rate during CASES-97. Black symbols are from aircraft; colors are from profilers at Beaumont (blue) and Whitewater, Kansas (red). (a) Comparison with Wyoming King Air on 4 May 1997, (b) with King Air on 10 May, (c) with King Air on 16 May, (d) with King Air on 20 May, and (e) with NOAA Twin Otter on 20 May.
operated at Whitewater and Beaumont, Kansas during CASES-97 similarly produced dissipation rates that were larger than those measured by aircraft. Despite the larger magnitudes of dissipation, its qualitative vertical structure in the profiler data was quite similar to that observed by the aircraft. Further, comparisons of boundary-layer-averaged dissipation from the aircraft and the ABLE profilers showed that 85% of the variance in the profiler estimates was explained by the aircraft observations. This suggests that, after removal of established non-turbulent broadening effects, spectral widths from the profilers are driven largely by the small-scale turbulence. Thus, it seems feasible that until the source of this error is understood, a simple correction factor may suffice to obtain good measurements of dissipation rate.

6. ACKNOWLEDGEMENTS

This work was supported by the U.S. Department of Energy (DOE), under the auspices of the Atmospheric Sciences Program of the Office of Biological and Environmental Research. We are grateful to NCAR for providing NIMA to PNNL through a research license and for helpful discussions with Cory Morse of NCAR. This work was performed at Pacific Northwest National Laboratory, which is operated for DOE by the Battelle Memorial Institute under contract DE-AC0676RLO 1830, and at the National Center for Atmospheric Research.

7. REFERENCES

