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1. INTRODUCTION 
 

The genetic algorithm (GA) is finding wide 
acceptance in many disciplines.  This paper 
introduces the elements of GAs and their 
application to environmental science 
problems.   

 
The genetic algorithm is an optimization 

tool that mimics natural selection and 
genetics. The parameters to be optimized are 
the genes, which are strung together in an 
array called a chromosome.  A population of 
chromosomes is created and evaluated by the 
cost function, with the “most fit” chromosomes 
being kept in the population while the “least fit” 
ones are discarded.  The chromosomes are 
then paired so they can mate, involving 
combining portions of each chromosome to 
produce new chromosomes.  Random 
mutations are imposed.  The new 
chromosomes are evaluated by the cost 
function and the process iterates.  Thus the 
parameter space is explored by a combination 
of combining parts of the best solutions as well 
as extending the search through mutations.  
The trade-offs involved in selecting population 
size, mutation rate, and mate selection are 
briefly discussed below.  

 
The key to using GAs in environmental 

sciences is to pose the problem as one in 
optimization.  Many problems are quite 
naturally optimization problems, such as the 
many uses of inverse models in environmental 
science. Other problems can be manipulated 
into optimization form by careful definition of 
the cost function, so that even nonlinear  
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differential equations can be approached 
using GAs.  Examples of both the natural type 
as well as those contrived into an optimization 
form are presented. 
 

GAs are well suited to many optimization 
problems where more traditional methods fail. 
Some of the advantages they have over 
conventional numerical optimization 
algorithms are that  they: 
• Optimize with continuous or discrete 

parameters, 
• Don’t require derivative information, 
• Simultaneously search from a wide 

sampling of the objective function surface, 
• Deal with a large number of parameters, 
• Are well suited for parallel computers, 
• Optimize parameters with extremely 

complex objective function surfaces, 
• Provide a list of semi-optimum 

parameters, not just a single solution, 
• May encode the parameters so that the 

optimization is done with the encoded 
parameters, and 

• Works with numerically generated data, 
experimental data, or analytical functions. 

These advantages outweigh the GAs’ lack of 
rigorous convergence proofs. 
 
     In the following sections we give a short 
overview of how the GA works, briefly review 
some of the ways that GAs have been used in 
environmental science, and present an 
example application that demonstrates the 
strength of the GA on an inverse problem.  
 

 
2. INTRODUCTION TO GENETIC 

 ALGORITHMS 
 
     John Holland is often referred to as the 
“father of genetic algorithms.”  He developed 
this brand of genetic programming during the 
1960’s and 1970’s and his work is described in 



his book (Holland 1975).  His student, David 
Goldberg, popularized the method by solving a 
difficult problem involving the control of gas-
pipeline transmission for his dissertation (see 
Goldberg 1989).  Since that time, they have 
been applied to a wide variety of problems, 
including those described above. 
 

The following explanation follows the flow 
chart in Figure 1. The first step is defining an 
objective function with inputs and outputs. A 
binary GA encodes the value of each input 
parameter (e.g. a, b, c, d) as a binary number.  
The parameter values are then placed side-
by-side in an array known as a chromosome.  
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Figure 1:  Flow chart of Binary Genetic 
Algorithm 
 

A population is a matrix with each row 
representing a chromosome. The algorithm 
begins with a population consisting of random 
ones and zeros (see Figure 2).  
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Figure 2.  Initial population of binary coded 
parameters. 
 
These random binary digits translate into 
guesses of values of the input parameters. 
Next, the binary chromosomes are converted 
to continuous values which are evaluated by 
the objective function. Mating takes place 
between selected chromosomes. Mates are 
randomly selected with a probability of 
selection greater for those chromosomes 
yielding desirable output from the objective 
function (tournament or roulette wheel 
selection). Offspring (new chromosomes) 
produced from mating inherit binary codes 
from both parents. A simple crossover scheme 
randomly picks a crossover point in the 
chromosome. Two offspring result by keeping 
the binary strings to the left of the crossover 
point for each parent and swapping the binary 
strings to the right of the crossover point, as 
shown in Figure 3. Crossover mimics the 
process of meiosis in biology. Mutations 
randomly convert some of the bits in the 
population from “1” to “0” or visa versa. The 
objective function outputs associated with the 
new population are calculated and the process 
repeated. The algorithm stops after finding an 
acceptable solution or after completing a set 
number of iterations.  
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Figure 3.  Crossover during the mating 
process. 
 

Selecting the best population size, mating 
scheme, and mutation rate is still an area of 
controversy. Haupt and Haupt (1998, 2000) 
address some of these issues. Since the GA is 
a random search, a certain population size 
and mutation rate can give considerably 
different answers for different independent 
runs. A GA run will give a good answer found 



from a wide exploration of the search space 
but not necessarily the best answer. 

 
Most real world optimization problems 

have multiple objectives. Multiple objectives 
can be handled by weighting and adding the 
fitness from each objective. Multi-objective 
optimization does not have a single optimum 
solution relative to all objectives. Instead, 
there are a set of optimal solutions, known as 
Pareto-optimal or non-inferior solutions. A 
Pareto GA attempts to find as many Pareto-
optimal solutions as possible, since all these 
solutions have the same cost. 
 
 
3. USES OF GENETIC ALGORITHMS IN 

ENVIRONMENTAL SCIENCE 
 

There is a recognized need for better 
methods of optimization in the envi ronmental 
sciences.  For instance, many different 
problems involve fitting a model to observed 
data.  Sometimes the data is a time series 
while other times it is an observed 
environmental state.  Often, some general 
functional forms are known or surmised from 
the data.  But frequently, the goal is to fit 
model parameters to optimize the match 
between the model and the data.  Practitioners 
often go the next step and use the model to 
make predictions.  The need for new tools 
involving Artificial Intelligence (AI) techniques, 
including Genetic Algorithms, is noted by Hart, 
et al. (1998) among others. 

 
One example of fitting a model to 

observed data using a GA is reported by 
Mulligan and Brown (1998).  They use a GA to 
estimate parameters to calibrate a water 
quality model. They used nonlinear regression 
to search for parameters that minimize the 
least square error between the best fit model 
and the data.  They found that the GA works 
better than more traditional techniques plus 
noted the added advantage that the GA can 
provide information about the search space, 
enabling them to develop confidence regions 
and parameter correlations.  Some other work 
related to water quality includes using GAs to 
determine flow routing parameters (Molian and 
Loucks 1995)) solving ground water 
management problems (McKinney and Lin 
1994, Rogers and Dowla 1994, Ritzel, et al. 
1994), sizing distribution networks (Simpson, 

et al. 1994), and calibrating parameters for an 
activated sludge system (Kim, et al. 2002). 

 
Managing groundwater supplies has found 

AI and GAs useful.  Peralta and collaborators 
have combined GAs with neural networks and 
simulated annealing techniques to combine 
the advantages of each.  Aly and Peralta 
(1999a) used GAs to fit parameters of a model 
to optimize pumping locations and schedules 
for groundwater treatment.  They then 
combined the GA with a neural network (NN) 
to model the complex response functions 
within the GA (Peralta and Aly 1999b).  Shieh 
and Peralta (1997) combined Simulated 
Annealing (SA) and GAs to maximize 
efficiency and well use the easily applied 
parallel nature of the GA.  Most recently, 
Fayad (2001) together with Peralta used a 
Pareto GA to sort optimal solutions for 
managing surface and groundwater supplies, 
together with a fuzzy-penalty function while 
using an Artificial Neural Network (ANN) to 
model the complex aquifer systems in the 
groundwater system responses. 

 
Another example is the successful 

application of a GA to classification and 
prediction of rainy day versus non-rainy day 
occurrences by Sen and Oztopal (2001).  
They used the GA to estimate the parameters 
in a third order Markov model. 
 
      An example from geophysics is 
determining the type of underground rock 
layers. Since it is not practical to take core 
samples of sufficient resolution to create good 
maps of the underground layers, modern 
techniques use seismic information or apply a 
current and measure the potential difference 
which gives a resistance. These various 
methods produce an underdetermined 
multimodal model of the Earth. Fitting model 
parameters to match the data is regarded as a 
highly nonlinear process. Genetic algorithms 
have found recent success in finding realistic 
solutions for this inverse problem (Jervis and 
Stoffa 1993; Jervis, et al. 1996, Sen and Stoffa 
1992a,b; Chunduru, et al. 1995, 1997; 
Boschetti, et al. 1995, 1996, 1997; Porsani, et 
al. 2000). Minister, et al. (1995) find that 
evolutionary programming is useful for locating 
the hypocenter of an earthquake, especially 
when combined with simulated annealing. 
 



     Another inverse problem is determining the 
source of air pollutants given what is known 
about monitored pollutants. Additional 
information includes the usual combination 
(percentages) of certain pollutants from 
different source regions and predominant wind 
patterns. The goal of the receptor inverse 
models is to target what regions, and even 
which sources contribute the most pollution to 
a given receptor region. This process involves 
an optimization. Cartwright and Harris (1993) 
suggest that a genetic algorithm may be a 
significant advance over other types of 
optimization models for this problem when 
there are many sources and many receptors. 
 
     Evolutionary methods have also found their 
way into oceanographic experimental design. 
Barth (1992) showed that a genetic algorithm 
is faster than simulated annealing and more 
accurate than a problem specific method for 
optimizing the design of an oceanographic 
experiment. Porto, et al. (1995) found that an 
evolutionary programming strategy was more 
robust than traditional methods for locating an 
array of sensors in the ocean after they have 
drifted from their initial deployment location. 
 
     Finally, Charbonneau (1995) gives three 
examples of uses of a genetic algorithm in 
astrophysics: modeling the rotation curves of 
galaxies, extracting pulsation periods of 
Doppler velocities in spectral lines, and 
optimizing a model of hydrodynamic wind. 
 
 
4. EXAMPLE APPLICATION 
 
     Many of the applications reviewed above 
use a GA to fit parameters to a model based 
on data, we choose to demonstrate the utility 
of the GA on a specific inverse problem.  In 
particular, we will begin with time series data 
from the predator-prey model (also known as 
the Lotka-Volterra equations), namely: 
 

dxycy
dt
dy

bxyax
dt
dx

+−=

−=
     (1) 

 
where x is the number of prey and y the 
number of predators. The prey growth rate is 
a  while the predator death rate is c. 

Parameters b and d characterize the 
interactions. Equations (1) were integrated 
using a fourth order Runge Kutta with a time 
step of 0.01 and parameters a =1.2, b=0.6, c= 
0.8, and d=0.3. The time series showing the 
interaction between the two appears as Figure 
4. This time series serves as the data for 
computing the inverse models below. 
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Figure 4. Time series showing predator and 
prey variations over time according to 
equation (1). 
 
 
The phase space plot is Figure 5 where we 
see the limit cycle between the predators and 
the prey. 
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Figure 5.  State space showing predator-prey 
interactions. 
 



     A standard linear least squares model fit 
would be of the form: 
 
  CLss t +=       (2) 
 
where s is a vector incorporating both x and y, 
L is a linear matrix operator, and C is the 
additive constant. This simple linear form is 
easily fit using standard analytical techniques 
to minimize the least square error between the 
model and data. The least squares fit to the 
linear model appears in Figure 6.  We note 
that the agreement is quite poor, as one would 
expect given that the system (1) is highly 
nonlinear.  With no nonlinear interaction 
available, the number of prey grows while the 
number of predators remains stationary. 
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Figure 6.  Least squares time series fit to 
predator-prey model. 
 
 
     To obtain a more appropriate nonlinear fit, 
we now choose to model the data with a 
nonlinear model: 
 

CLssNss T
t ++=      (3) 

 
We now allow nonlinear interaction through 
the nonlinear third order tensor operator, N.  
Although one can still find a closed form 
solution for this nonlinear problem, it involves 
inverting a fourth order tensor.  For problems 
larger than this simple two-dimensional one, 
such an inversion is not trivial.  Therefore, we 
choose to use a genetic algorithm to find 
parameters which minimize the least square 
error between the model and the data.  The 
GA used an initial population size of 200, a 

working population size of 100, and a mutation 
rate of 0.2.  A time series of the solution as 
computed by the GA appears in Figure 7.  
Note that although the time series does not 
exactly reproduce the data, the oscillations 
with a phase shift of roughly a quarter period 
is reproduced.  The wavelength is not exact 
and the amplitudes grow in time, indicating an 
instability.  This instability is likely inherent in 
the way that the model is matched.  However, 
the reproduction of such a difficult nonlinear 
system is amazing given the comparison to 
traditional linear models. 
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Figure 7. Time series of predator-prey 
interactions as computed by the genetic 
algorithm. 
 
 
The state space plot appears in Figure 8.  
Once again, the limit cycle is not actually 
reproduced.  The nonlinear model instead 
appears unstable and slowly grows.  However, 
the comparison with the linear least squares 
model resulted in merely a single slowly 
growing curve (not shown).  The GA nonlinear 
model was able to capture the cyclical nature 
of the oscillations. 
 
Finally, Figure 9 shows the convergence of the 
GA for a typical run of fitting the nonlinear 
model (3) to the data.  Note that due to their 
random nature, the results of the GA are never 
exactly the same.  In particular the 
convergence plots will differ each time.  
However, it is amazing how the results are so 
reliable. 
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Figure 8.  The predator-prey relation in state 
space as computed by the nonlinear model 
with parameters fit by the GA. 
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Figure 9.  Evolution of the minimum cost for 
the GA fit to the nonlinear model parameters. 
 
 
6. CONCLUSIONS 
 
     We have shown that genetic algorithms are 
not only an effective way of solving 
optimization problems, but they can also be 
rather fun to apply.  They have begun to find 
their way into applications in the 
environmental sciences as cited above, but 
their strengths have only begun to be tapped.  
We have demonstrated here how versatile 
these algorithms are at finding solutions where 
other methods often fail.  We saw that for a 
simple two-dimensional nonlinear system 
describing predator-prey relations, the GA was 
able to fit the parameters of a nonlinear model 
so that the attractor was much better produced 

than by a traditional linear least squares fit.  
Although the match is not perfect, the 
nonlinear GA model captured the essence of 
the dynamics. 
 
     Here, we have only discussed binary 
genetic algorithms and their most direct 
applications to optimization problems.  The 
companion paper (Haupt 2003) describes the 
version of the GA encoded in terms of floating 
point numbers and describes its application in 
more complex problems.  We show there how 
to pose boundary value problems in terms 
amenable to minimization and show how 
genetic algorithms can be effective at finding 
solutions to highly nonlinear partial differential 
equations.  In additions, we show variations of 
the inverse type problem described here 
where a highly nonlinear system of equations 
can be stochastically modeled if the 
parameters are fit using a GA. 
 
     The hope is that this work has whet the 
reader’s appetite and that the GA will find its 
way into other interesting problems. Our goal 
is to inspire other environmental scientists to 
try the GA on problems that arise in 
optimization. 
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