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1 INTRODUCTION 
The relationship between satellite 

microwave observations and rain-rate is 
investigated through analysis of an archive of 
collocated AMSU (Advanced Microwave 
Sounder Unit), AVHRR (Advanced Very High 
Resolution Radiometer), and Doppler weather 
radar data. The NACA archive (NIWA ATOVS 
Collocation Archive) was constructed from 
NOAA-15 AMSU observations collocated with 
high temporal resolution (15 min) radar data 
from three New Zealand weather radars, and 
with visible and near-infrared imager data from 
AVHRR on NOAA-15 platform. The archive 
preserves high resolution information at sub-
AMSU instantaneous field of view (ifov) scale, 
allowing to study underlying uncertainties in rain-
retrieval algorithms arising from beamfilling 
effects. Satellite rainfall estimates are of value in 
nowcasting and rain-process studies, as well as 
in identifying radiative contaminants in the 
observations used in numerical weather 
prediction models (e.g. the New Zealand Limited 
Area Model, NZLAM-VAR). 
 

2 METHOD 
Rain retrieval from AMSU microwave 

observations can be based on a scattering 
signal present at AMSU-B high frequency 
channel. Fig. 1 and Fig. 2 show the different 
behavior of the brightness temperatures in 89 
GHz and 150 GHz channels as a function of ifov 
mean rain-rate. The brightness temperature has 
large variation at any given rain-rate, so that the 
overall rain-signal becomes more apparent after 
binning, as plotted in the right hand side panels. 
The average brightness temperature in the 
longer wavelength 89 GHz channel shows 
initially rapid increase due to emission from the 
light rain, and then remains largely constant with 

increasing rain-rates, whereas in the 150 GHz 
channel there is a strong monotonic decrease. 
This is because with higher rain-rates the 
number of scattering particles comparable to the 
short wavelength (2 mm) at 150 GHz is higher, 
and the scattering effect becomes stronger. 
 

 
Fig. 1 Brightness temperature signatures of cloud 
liquid and precipitable water in AMSU-B 89 GHz. 
Scatter plot (left) and standard error interval of the bin 
average (right). 
 

 
Fig. 2 Brightness temperature signatures of cloud 
liquid and precipitable water in AMSU-B 150 GHz. 
Scatter plot (left) and standard error interval of the bin 
average (right). 
 
       We used the NACA AMSU-B database to 
derive a model for the scatter-free 150 GHz 
channel brightness temperatures using a subset 
of cloudy, non-raining over-ocean samples. With 
negligible scattering on a wide frequency range 
in these samples, the 89 GHz channel alone is a 
good predictor for the 150 GHz channel. From 
the dependent sample set we obtained for the 
model 150 GHz brightness temperature the 
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for the rain-rate (mmh-1), with explained variance 
of R2=0.61. 
 
      In order to improve the rainfall estimate from 
this general model we can use prior knowledge 
of the rain-processes inside the ifovs. Having 
SRTex cloud classification done for the ifovs in 
NACA database, this information can be used to 
partition the dataset. We derived cloud-class 
specific rain-rate models RR(SI) for the different 
cloud-classes by requiring that a large fraction (> 
0.90) of the cloudy area in the ifov is filled with 
the specific cloud. Four cloud-class specific 
models (for eCu, Ac, Cb, and Cu)  performed 
better than the general RR(SI) model. In the 
algorithm using cloud classification information, 
which we will call the SRTex algorithm, we used 
the RR(SI) models derived from the dependent 
subset for these four cloud classes. In addition 
to cloud specific rain models, clouds with none 
or insignificant rain can be identified, and zero 
rain-rate estimate assigned, regardless of the 
scattering index value. Two cloud classes, Sc 
and St, were defined in this sense as “never 
raining” in the SRTex algorithm. 

 
where � is the local zenith angle of the 
spacecraft. In raining samples the 89 GHz 
channel and consequently the derived 150 GHz 
model remain largely unaffected by the rain. This 
can be seen in Fig. 3 (left), where the upper plot 
shows the standard error interval of the model 
average as a function of ifov mean rain-rate. 
Compared against this is the measured 150 GHz 
brightness temperature (repeated from Fig. 2) 
showing the decrease with increasing rain-rates. 
The difference between the model and the 
measured brightness temperature is the 
scattering index (SI) at 150 GHz, and the 
standard error interval of its bin average is 
plotted in Fig. 3 (right). 
 
 

 

 
      The third and final rain-rate algorithm is 
obtained by combining the SRTex method and 
the general scattering index relation, so that in 
those ifovs where the SRTex method can not be 
applied, the general RR(SI) relation is used 
instead.  
 Fig. 3 Left: NACA subset of raining samples. Standard 

error interval of the bin average of non-precipitating 
model (upper plot) and measured (lower plot) AMSU-
B 150 GHz brightness temperatures. Right: Standard 
error interval of the bin average of scattering index. 
Both diagrams plotted against the ifov mean rain-rate. 

      Table 1 summarises the results in terms of 
the explained variance, when applying the 
general, SRTex and combined methods to an 
independent sample set. The table shows the 
results with three different DBB thresholds. As a 
graphical example Fig. 4 shows the resulting 
rain-rate estimate in AMSU-B footprint for the 
area over New Zealand, when the algorithm is 
applied to AMSU-B 89 GHz and 150 GHz 
channels for one NOAA-15 pass in 24th January, 
2000. 

 

3 RESULTS 
In a general, simple approach to quantify 

the rainfall, one can take SI as a predictor for the 
rain-rate regression. It is necessary to limit the 
samples to those which have high navigation 
accuracy and have the radar lowest beam 
distance to bright band (DBB) sufficiently large. 
In the selected subset the model fit then gave 
the expression 
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General SRTex Combined DBB-
threshold 

(km) n R2 n R2 n R2 

1.0 6654 0.459 4106 0.640 6654 0.510 
1.5 2351 0.563 1428 0.691 2351 0.626 
2.0 503 0.611 282 0.817 503 0.694 

Table 1 Explained variances and the respective sample sizes of three rain-rate 
algorithms, when applied to independent cloudy sample sets with three different radar 
DBB thresholds. 

 
 
 

 
 
Fig. 4 The RR(SI) scattering index rain-rate algorithm 
applied to NOAA-15 orbit 8832, 24th January, 2000, 
1910-1935 UTC. Mean rain-rate within AMSU-B ifovs. 
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