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1. INTRODUCTION

In this work we look at the equilibration of the baro-
clinic problem emphasizing the redistribution of mo-
mentum. We show using an idealized model that
baroclinic adjustment is essentially a 3D process,
and argue that baroclinic adjustment models that
only consider vertical adjustments in shear lack some
basic dynamics. Surface friction constrains not just
the barotropic component of the flow, but also the
degree of thermal homogenization at the surface. We
also demonstrate that for a forced-dissipative system
there must be a nonzero surface temperature gradi-
ent over latitudes with surface westerlies.

1. A 2D FRAMEWORK

Consider the equilibration of an unstable mode with
mixing depth H in the Charney-Boussinesq problem
(figure 1). What we mean by that is that the scale
of the mode is such that its fluxes only extend up to
the height H throughout the equilibration, leaving
an umodified basic state at and above that height.

As the wave equilibrates, the interior PV gradient
is reduced and the zonal wind develops some cur-
vature. At the same time, the surface shear is re-
duced. For the profile shown the reduction in the
surface shear is insufficient and there is a remnant
temperature gradient at the surface. In order to fully
eliminate the surface shear, the flow would need to
develop a larger vertical curvature, as indicated by
the dash-dotted line on the far right. However, there
is a limit to how much curvature the flow can de-
velop, a limit that depends on B. If the curvature
is too large, the interior PV gradient becomes nega-
tive, which we presume to be unstable. Hence, the
interior PV gradient and mixing depth H set up a
limit to the maximum reduction in the surface shear.

This constraint can be formalized by considering the
vertically integrated PV gradient between the sur-
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face and H for the 1D Charney-Boussinesq problem
(i-e., neglecting the horizontal curvature of the jet):

/0qu dz=/0Hﬁ<1_%> dz = 8 (H — h(H)),

where h = U,¢e/3, and the integral also includes the
surface delta function, modeled as a jump in A from
0 to its interior value. Because h(H) remains un-
changed, the eddies can only redistribute g,,, but not
change its integrated value over the mixing depth. If
H < h, the integrated PV gradient is negative.

This argument, hereafter called the mixing depth
constraint, suggests that short waves with small H/h
are unable to eliminate the surface temperature gra-
dient, even in the inviscid limit. Note that this is
precisely the scaling used by Zurita and Lindzen
(2001) (hereafter ZL), who choose the half Rossby
depth as an estimate for H. They define short Char-
ney modes as modes shorter than the most unstable
one (H/h < 3.9), and argue that those are in fact
the only modes allowed by the meridional scale of the
jet. ZL showed that (i) the PV flux of short Char-
ney modes peaks at the steering level and (ii) these
modes can be neutralized by partial PV homogeniza-
tion at that level alone. However, they only observed
this in their nonlinear model for large enough fric-
tion. Otherwise, the strong barotropic acceleration
of the jet makes the steering level drop, leading to
the eventual homogenization of surface temperature.

These results are also consistent with previous ide-
alized baroclinic equilibration/lifecycle studies that
typically find that low friction favors both (i) a
strong barotropic acceleration of the jet and (ii)
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Figure 1: Sketch illustrating the adjustment of the
basic state by a short mode in the Charney problem.



enhanced thermal homogenization at the surface.
While point (i) is a straightforward consequence of
the momentum balance, the physics behind point (ii)
is not so clear. We address this issue by discussing
the baroclinic equilibration in terms of the redistri-
bution of momentum. For this purpose, the 2D limit
provides a useful conceptual benchmark, as momen-
tum is only redistributed along one direction in that
problem. It is only in the 2D limit that the mixing
depth constraint introduced above strictly applies.

3. MOMENTUM REDISTRIBUTION

Two-dimensional redistribution

We use the barotropic point jet to look at the 2D
redistribution of momentum. This model consists of
an easterly triangular jet on the beta plane (figure
2a), and is homomorphic with the Charney problem
in the linear regime. The jump in shear at the jet
vertex gives a negative delta-function PV gradient,
while 3 gives a constant, positive PV gradient in the
interior. As before, we define a dimensionless mode
length L/l based on the ratio between the interior
and vertex PV gradients. The scale of the dominant
mode can then be chosen by zonally truncating the
channel, or by changing /3 for a given channel length.
We present results below for the runs with L/l =
1.25 and L/l = 3.9 (the most unstable mode).

Figures 2b,c show the PV gradient in the final state
for both cases. For the shortwave, there is a negative
PV gradient over the central part of the channel, and
the PV gradient only vanishes at the steering level.
For the most unstable mode on the other hand, the
PV gradient becomes everywhere positive, and the
steering level disappears. These results are consis-
tent with the mixing depth constraint.

Figure 2d shows the mean flow correction in the final
state, which is very similar for both cases. There is a
westerly acceleration at the vertex and a compensat-
ing easterly acceleration in the interior, which results
in a reduction of the mean shear. In both cases, effi-
cient PV homogenization was observed at the steer-
ing level at all times (not shown). The main dif-
ference was that, while for the shortwave the steer-
ing level moved slightly away from the vertex during
the adjustment, for the MUM it moved inward un-
til it disappeared. We found that the phase speed
of the waves changed little during the adjustment
(due to the conservation of the mean momentum),
and changes in the steering level were mainly due to
changes in U(y). When the acceleration at the origi-
nal steering level is easterly, the steering level moves

outward, and the reverse is also true. As figure 2d
shows, this is the a difference between both runs.

Three-dimensional redistribution

We now turn our attention to the 3D problem. We
use a qg model, forced by linear relaxation to a
Charney-like basic state (but also modulated merid-
ionally by a Gaussian envelope). Rayleigh friction is
included at the lowest resolved level. As before, the
channel length is truncated and the dimensionless
depth of the mode H/h is changed by changing

The top panels of figure 3 show results for a run with
H/h = 0.86 and no surface friction. We show the ab-
solute value of the PV gradient (normalized by 3)
and |U — ¢|, where c is the phase speed; regions with
values of the contoured magnitude outside the range
shown are non-shaded. Despite the small value of
H/h, the negative PV gradient is eliminated at the
center of the channel and the steering level disap-
pears over the same region. The inspection of the
time series (not shown) reveals a good agreement
between the position of the steering level and the
well-homogenized region during the adjustment.

Based on similar results, ZL attribute the failure of
the flow to equilibrate through partial PV homog-
enization to the expansion of the well-homogenized
region as the steering level drops. However, it may
be misleading to assign causality in this context:
more properly, both the changes in PV structure and
the evolution of the steering level should be regarded
as a result of the eddy redistribution of momentum.

The elimination of the surface shear for this small
value of H/h is in violation of the mixing depth con-
straint. To see why this is the case, it is illuminating
to compare how momentum is redistributed in the
2D and 3D problems. In the former, there is a trans-
fer of (easterly) momentum from the jet vertex to
the interior, which results in a reduction of the mean
shear. Similarly, there is in the 3D problem a vertical
transfer of momentum, though now through a very
different physical mechanism. The vertical momen-
tum transfer results in this case from the easterly
(westerly) tendency that the Coriolis force induces
on the upper (lower) branch of an indirect mean
meridional circulation. This vertical transfer of mo-
mentum should be adscribed to the eddy heat flux,
as the role of this circulation is to enforce thermal
wind balance with the modified temperature field.

In the presence of the heat flux alone, the situation
would be much like in the 2D problem. Momentum
would be simply redistributed vertically with no net
acceleration of the column, and the mixing depth



constraint would still apply. However, what makes
this problem essentially different from the 2D one is
the fact that there is now an additional horizontal
redistribution of momentum by the eddy momen-
tum flux. The net momentum of the column is no
longer conserved, but there is a net westerly acceler-
ation over the central latitudes (and compensating
easterly acceleration on the margins of the jet). It
is this westerly acceleration that makes the steering
level drop, as was also the case in the 2D problem
when the acceleration at that level was westerly.

The effect of this westerly acceleration can be appre-
ciated by comparing the top and bottom panels of
figure 3. With surface friction, the westerly accelera-
tion is less prominent, the steering level drops much
less, and the flow fails to eliminate the surface tem-
perature gradient and equilibrates instead through
partial PV homogenization. This is also illustrated
in figure 4, which shows that in the presence of a
strong westerly acceleration the flow is more suc-
cessful in eliminating the surface shear, thus violat-
ing the mixing depth constraint. While in the 2D
problem the westerly acceleration at the vertex is
accompanied by compensating easterly acceleration
along the column, in the 3D problem most of the
easterly acceleration occurs on the sides. This al-
lows a more efficient export of easterly momentum
out of the baroclinic zone, which is why the mixing
depth constraint, that assumes that momentum is
just redistributed vertically, no longer works.

Note that the horizontal redistribution of momen-
tum also has implications for the PV gradient. This
is illustrated in figure 5, which shows the contribu-
tions to the zonal mean PV gradient resulting from
the vertical curvature of the zonal wind (top), the
horizontal curvature (middle), and the total PV gra-
dient, also including S (bottom), for the run with
H/h = 0.86 and damping time scale 3 days. For the
simple basic state considered, the radiative equilib-
rium PV gradient resulting from the vertical curva-
ture term (shown dashed) is zero in the interior and
a negative delta function at the surface. This neg-
ative delta function reflects the transition from the
constant interior vertical shear of the Charney prob-
lem to zero shear right underneath the surface. As
the wave equilibrates and redistributes momentum
vertically, the negative PV jump across the surface
delta function is reduced, and part of the adjust-
ment in shear occurs across a finite layer with neg-
ative vertical-curvature PV gradient. In order to
prevent negative interior PV gradients, the mixing
depth constraint would demand that this negative
contribution be smaller than 8. However, larger val-

ues, order O(2f3) are observed. This is possible be-
cause the horizontal curvature term, which is pos-
itive, increases, thus allowing larger vertical curva-
tures and further adjustments in shear while still
keeping a non-negative interior PV gradient. In the
low friction case, both the horizontal and vertical
curvature terms are larger (not shown).

We can account for these effects, by considering a
generalized mixing depth constraint based on the
areal integral of g,. It is then easy to show that when
B and/or H are too small for the given shear, the net
integrated PV gradient must be negative. However,
in the 3D case this does not preclude g, from be-
coming everywhere positive at the central latitudes,
as found in the inviscid runs, provided that the neg-
ative PV gradients are enhanced on the sides.

ZL argued that because of the meridional confine-
ment by the jet, tropospheric waves are short Char-
ney modes. They also proposed an equilibration
mechanism in which the waves first reduce H/h by
narrowing the jet, and then mix down PV at the
steering level. The results presented above do show
that one of the main effects of the eddy momen-
tum flux is the self-focusing of the jet. However,
a more careful analysis reveals that the dimension-
less scale of the waves H/h increases rather than
decreases during the equilibration. The reason is
that when the jet narrows, the Held scale h also de-
creases because the positive PV gradient in the in-
terior is reinforced by the enhanced curvature. This
is in fact what ultimately allows modes that were
initially short to get rid of the surface shear, by con-
centrating the positive PV gradient from the sides.

The proposed mechanism relies on the fact that the
horizontal and vertical curvatures of the zonal wind
are comparable, as shown in figure 5. A careful ex-
amination of reanalysis data suggests that the same
is the case in the actual troposphere (not shown), de-
spite the frequent claim to the contrary. This is not
so surprising: if the jet constrains the depth of the
eddies, its width should scale as the Rossby radius,
which implies that its horizontal and vertical curva-
tures should also be comparable. It is inconsistent
to assume that the scale of the eddies is controled
by the jet width, and yet neglect the PV gradient
contribution resulting from its horizontal curvature.

In conclusion, surface friction is what ultimately
constrains the scale of the modes in our runs, by
preventing the self-focusing mechanism described
above. Moreover, by constraining the development
of the horizontal curvature, surface friction con-
strains the development of the vertical curvature,



and thus the reduction in the surface temperature
gradient. This simple argument explains why sur-
face friction prevents the elimination of the surface
temperature gradient, as found in previous studies,
and is also consistent with our finding that the flow
keeps an interior steering level in such cases.

4. ON THE MAINTENANCE OF THE MO-
MENTUM BALANCE

We described above the redistribution of momen-
tum as a baroclinic wave equilibrates. In the forced-
dissipative case, this redistribution must balance the
frictional forcing resulting from the mean flow imbal-
ance. As shown below, this has implications for the
sign of the PV gradients in the equilibrated state.

Consider the following equations describing the
mean flow balance and eddy enstrophy conservation:

oU — —
e 00" =v'q' —ay (U —Up) (1)

o [q? 8 [v'qg? _ )
a (%) + 6_31 (%) +v'q! ﬁy = Dis (2)

and let us concentrate on the 2D problem first. In
that case, the forcing by the residual circulation fov*
is zero and the eddy PV flux is the only dynamical
forcing of momentum, so that in equilibrium:

v'q' = am(U - Uo) (3)

On the other hand, in the 2D case eddy enstrophy
dissipation is negative definite Dis = —a;q2. The
maintenance of eddy enstrophy against dissipation
then requires that the time-mean eddy PV fluxes are
on average downgradient, i.e., [ v'q' g,dy < 0. If we
also neglect the eddy advection of eddy enstrophy
(second term in equation 2), then v'q’ is everywhere
downgradient, and not just in a global sense.

For downgradient PV fluxes, the PV gradient must
change sign in the equilibrated state. Specifically, g,
must be negative (positive) over regions of westerly
(easterly) mean flow acceleration, so that the down-
gradient eddy drag v'q’ can maintain the mean flow
imbalance against the frictional drag (equation 3).

However, things are more complicated in the 3D
problem. Though eddy enstrophy dissipation is not
strictly negative definite, it is still often true that
the time-mean PV fluxes are on average downgradi-
ent. This again implies that g, must change sign for
the equilibrated flow. However, note that this does
not prevent g, from becoming one-signed at some

latitudes, as found in our forced-dissipative model
in the absence of surface friction.

The main difficulty is that v’¢’ is not the only dy-
namical forcing of momentum, but there is an addi-
tional redistribution by the residual circulation foU*.
Hence, it is no longer possible to establish a local
relation between the sign of the PV gradient and
the mean flow imbalance, as we did in the 2D case.
However, the residual circulation only redistributes
momentum vertically but exerts no net force on the
column. We can thus get rid of this term by inte-
grating equation 1 vertically, provided that we also
include the delta-function return flow at the surface
(which can be interpreted as a momentum reservoir):

/ vdds = — / 9 (@) dz = améTs, (4)
0 o Oy

where Ug is the surface wind, and we assumed that
friction only acts over a surface layer with depth 4.

Then, the maintenance of surface westerlies against
friction requires that the net eddy drag over the
column also be westerly: [v'q’dz > 0. Assuming
downgradient PV fluxes, this requires a negative q,
somewhere along the column. This is consistent with
the results presented in the previous section, as we
always found with friction a nonzero temperature
gradient over those latitudes with surface westerlies.

This simple argument thus gives an alternative ex-
planation to the lack of thermal homogenization at
the surface in the midlatitudes, which does not rely
on the magnitude of the diabatic time scale. Un-
der the conditions specified above, the eddies cannot
eliminate the surface temperature gradient over the
latitudes with surface westerlies. Our results also
point to the formidable complexity of the baroclinic
equilibration problem: because the redistribution
of momentum in that problem is essentially three-
dimensional, baroclinic adjustment models that are
concerned with adjustments in the vertical structure
alone and only care about the magnitude of the dia-
batic time scales might lack some essential physics.
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Figure 2: For the barotropic point jet runs: (a) Basic state, (b) Equilibrium PV gradient for a shortwave
(H/h = 1.25), (c) Same for the most unstable mode (H/h = 3.9), and (d) Mean flow correction for both
cases; the horizontal marks show the initial position of the steering level.
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Figure 3: For the runs with § = 1.6 x 107 m~1s~! (H/h = 0.86): Absolute value of the zonal-mean PV
gradient normalized by B (left, contour unit 0.158) and of U — c (right, contour unit 2 m/s). Also shown
are the profiles at the center of the channel at equilibration (solid) and radiative equilibrium (dashed). (Top)
With no surface friction. (Bottom) With surface friction of time scale 8 days. Note that non-shaded regions
denote values of the contoured magnitude outside the specified contour range.
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Figure 4: Comparison of the zonal mean flow for the initial profile (dashed), and the equilibrated states for
the runs with H/h = 0.86 and the surface damping time scales indicated (note that a barotropic component,
different for both cases, has been substracted).
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Figure 5: (Left) Contributions to the zonal mean PV gradient resulting from: (top) vertical curvature,
(middle) horizontal curvature, and (bottom) total PV gradient, normalized by B for the run with 8 = 1.6 x
107" m~1s~! (H/h = 0.86), and surface damping time scale 3 days. (Right) Same but for the vertical
profiles at the center of the channel, with the radiative equilibrium distributions shown dashed.



