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1. Introduction

Improvements to numerical weather prediction (NWP)
models are actively pursued in the arenas of improved
data inputs (through data assimilation), model physics
(through field campaigns and process studies) and
improved numerics.  Additionally, it is often assumed
that increasing the model resolution will also lead to
improved analyses and forecasts as a matter of course,
especially for severe weather events.

Consequently, it is particularly interesting to examine
how a combination of present observations with a
model solution can be combined to utilise various
informational sources. The variational problem
associated with the estimation of state vector, xt, from
the background vector, xb, and observation vector, yo,
corresponds to the minimisation of the objective
function (Talagrand 1997, T97 in the following)

J(x)≡[x-xb]T(Pb)-1[x-xb]+[Hx-yo]TR-1[Hx-yo]   (1.1)

where x is the n-dimensional vector to be found. The
objective function is the sum of two terms, one
measuring the distance to the background, xb, the other
measuring the distance to the observation vector, yo.
These two terms are weighted by the inverse
covariance matrices of the corresponding errors, Pb and
R.

If the relevant observations are taken at points in space-
time different from the points at which estimates are
sought, the observation operator, H , will represent
some space-time interpolation. If the observations are
"indirect" functions of the parameters to be estimated
and do not directly represent all physical quantities,
then the observation operator, H , will represent an
appropriate linearisation of the physical and statistical
relationship linking state vector, x, and observation
vector, yo. As an example, satellite-derived radiometers
measure the radiative flux emitted by the Earth to
space, while what is desired are estimates of the
atmospheric temperature and humidity fields. The
measured fluxes are functions of these fields as well as
of other quantities, such as cloud amount, cloud top
pressure, and surface emissivity, through the radiative
transfer equations  or an equivalent operator.

Such an approach in a data assimilation context

requires knowledge of correct error statistics of both a
background field and the observations to be used in
obtaining the optimal state estimation. For an ideal
case, weighting coefficients should be prescribed in an
inverse ratio to the standard deviation of the error of
the corresponding data source. However, these error
statistics are still far from perfect.

While instrumental observation error or the accuracy of
an equivalent transfer operator function for indirect
measurements can often be reasonably evaluated,  the
representativeness error of the observations (Lorenc
1986) as well as the model errors are still poorly
known. The representativeness error, which is thought
to introduce a spatial correlation into the observation
error, is difficult and expensive to estimate and/or
specify. The model errors are a sum total of our
inadequate description of physical processes within the
governing equations plus the transformation of these
equations to a finite difference or spectral
representation. Thus, the analyzed initial conditions as
well as the ensuing forecast are very dependent on the
quality of the information sources. An additional
uncertainty arises when the data is distributed
heterogeneously in time or space. This is the case of
traditional observation networks covering most of the
globe, including the polar regions. High resolution
satellite data should also be treated as heterogeneous in
the vertical direction as well as the horizontal
directions for polar orbiting satellites.

2. Experimental framework

2.1. General Considerations

Most assimilation algorithms that have been used
operationally or in research, can be described as more
or less simplified forms of a least-squares statistical
linear estimation. This is a classical tool, whose basic
principles are straightforward, even though practical
implementation on large dimension systems can raise
many problems.

Sequential data assimilation schemes, such as optimal
interpolation, nudging, adaptive filtering, or the
Bayesian approach disturb the physical consistency of
the solutions through so-called "updating" of the model
states when correcting it by the observations.

Variational assimilation approaches, on the other hand,



aim at globally adjusting a model solution to all the
observations available over the assimilation period. As
the adjustment is simultaneous, the adjusted states at all
times are influenced by all the observations over the
assimilation period, thereby avoiding the difficulty
mentioned for sequential methods (T97). Another
feature of  variational assimilation is a requirement that
the accuracy (or error) of each informational source be
known. As was mentioned in the Introduction, the
errors and their statistics are not well understood.

Often, some assumptions concerning the accuracy of
both the model and the observations are used to
compensate for such a gap in knowledge. Such
assumptions are mostly made in the context of
homogeneous data distribution over the domain to be
studied.  Within the past few years several authors
(Schyberg 2002, Tanguay 2002, Majumdar 2001, Dee
2001, Molteni 2001, Marsigli 2001, Desroziers 2001a)
have paid more attention to the problem of the impact
from how the data is distributed on variational
assimilation systems.  A heterogeneously distributed
observing network would be expected to have a
significant and irregular impact on the observation
error distribution, if one only assumes that the
representativeness error is related to the corresponding
scale to be captured by the network. Such an
assumption has a strong basis due to the fact that
atmospheric processes possess continuous spectra with
amplitude descending towards the smaller scales. As
such, the representativeness error should be
proportional to the amplitude at each scale, and the
observation error is therefore a function of the scales
given by the distances between observation locations as
such scales fluctuate over the heterogeneous net.

2.2. Test in data assimilation scheme

To test the potential impact of observation data
resolution on a set of analysis fields, an experiment in
which observations are generated by a model itself has
been designed. This is a general approach (Desroziers
2001b, Rabier 2002) which, given knowledge of the
true answer, allows for a clear and simple evaluation of
the performance of the developed procedure. In this
experiment a domain over Alaska, shown in Figure 1,
was considered. The intent of the approach is to
simulate observations corresponding to a given set of
observation errors produced by using the operational
error for variances.

Two simulations were completed with the MM5 4Dvar
data assimilation model (e.g., Zou 1998). In the first
simulation, the observations are given by a simulated
set of measurements of the same variables as in the

Figure 1. Study domain,  with model grid (dots) overlain.
5-digit numbers indicate observation locations used in
the experimental simulations.

model, for the model grid point locations. The
observation errors are produced by using a random
noise generator applied to the operational error
variance for the atmospheric variables. The second
simulation was performed in the same manner, except
the number of the observational locations has been
restricted to six and placed at the model grid points
nearest to the real observations stations with the
numbers 231, 261, 266, 273, 326, 350 (see Figure 1).
This procedure of shifting the observation locations
onto the gridpoints allows us to avoid the use of an
observation operator, which when used can be non-
linear and result in additional error.

2.3 Field representation in physical and spectral space
.
The fact that an arbitrary mathematical function can be
represented by its trigonometric series was established
long ago by J. Fourier, in 1807. It is well known that
some restrictions must be placed on an arbitrary
function in order for it to be expanded in a Fourier
decomposition. This restriction is reflected in the
Riesz-Fischer theorem, which states that if the
spectrum of the function has a finite energy, then the
Fourier coefficients provide a one-to-one mapping
between the Fourier expansion and the continuous
field. This mapping preserves the energy, and the
associated Fourier series converges to the function in
the sense that the mean square error of the energy tends
to zero as the number of the coefficients tends to
infinity.



Thus, an infinite number of Fourier coefficients is
required term for a correct transform as well as a
complete description of a field in spectral space.  But in
nearly all atmospheric applications, discrete fields over
a finite time period are of concern. This gives rise to
the necessity to take into account possible
misrepresentations of the original fields by numerical
operations.  Apparently, these distortions take place
witin both physical and the spectral spaces, linked by
the appropriate relations. However, to classify and
describe such variations is simpler and more
convenient in spectral space. Until now, the
representativeness error, has been treated within the
context of an estimation of its possible limit value.
However, the complexity of the derived sources of data
and the sensitivity of data assimilation to the form of
any operator relating the atmospheric state to measured
quantities can be seen through the evaluation of the
representativeness error in spectral space. T h i s
approach also gives an opportunity to describe a
potential impact from using nonuniform carriers for
digitising a continuous signal. These carrier forms
posses rather complicated responses even if the number
of sampling points is not very much.

The primary applicable rules of the Fourier transform
and the description of the typical errors that arise due
to digitising the continuous signal will be discussed
below.

2.4. Errors due to  finite field representations.

Referring to Findlay (1978), the complex convolution
theorem for the spectrum of a field is given by:

XL(f) = 1/2π ∫X(f)*A(f-θ)dÿ      (2.3)

where XL(f), is the convolution of the original
spectrum, X(f), with a spectral width, A(f). (2.3) states
that the discretized spectrum, XL(f), is an altered
version of the original  spectrum, X(f).  The alteration
is described in part by the spectral width A(f), which in
turn is determined by the spatial domain of interest,
a(x),  in physical space. As a(x) increases, we see that
the departure of the discretized spectrum from the
original spectrum decreases, and asymptotically
approaches the delta-function when the domain
becomes infinitely large.

Another aspect that should be noted is often termed
"leakage”, and refers to the effect of interaction among
physical processes that operate over similar but not
equal scales. Such “leakage” leads to an incorrect
estimation of the physical fields. From a numerical
point of view, this is an outgrowth of the fact that a
spectral representation of a field can only recognize

components consistent with the maximum resolvable
scale of a domain. So, a larger domain ensures a more
precise extraction of the appropriate scales.

The types and potential sources of the errors in the
spectral space can be transferred into the physical
space. Formally, they are linked by the appropriate
properties in the physical space by the Fourier
transform.

The choice of domain size is often governed by the
available computing resources or the forecast problem
of interes. It is possible and probably necessary to
evaluate the value and distribution of the potential error
raised due to an insufficient amount of  information in
the scales covered within a given domain. This error
grows from the improper definition of the contributions
from different scales, and can be classified as a
representativeness error.

2.5. Aliasing and the error of discretising.

A numerical field representaiton of an atmospheric
quantity, defined  stepwise in time and space by steps
∆ t (or ∆x) and over a limited domain size N can be
linked to the spectral space by a Fourier series even
though the field cannot be considered periodic. The
corresponding Fourier coefficients exist only for
integer indeces and contain in their core a fundamental
frequency f=1/N (or ω=2π/N). That is, the field can be
partially represented as being periodic in space with
period N. Thus, we may only consider the Fourier
coefficients for one period, that is, for indices
k=0,1,2,...,N-1. In doing so, we establish a consistency
between the finite domain representation (physical
space) and the corresponding finite Fourier coefficient
domain representation (spectral space). Moreover, we
need only consider the harmonic frequencies fk=1/N for
k=0,1,2,...,N/2, since harmonic frequencies for k>N/2
represent redundant information. Thus, all the
necessary information provided by a discrete Fourier
transform is contained in the interval 0<k<N/2.

However, for the case where fN<2F, where F is the
highest value of the frequency from the band limited
spectrum, XL (f) becomes distorted due to the
overlapping harmonic components. In fact, the upper
frequencies in X(f) are reflected into the lower
frequencies in XL(f) and the high frequency component
in X(f) cannot be resolved.  This effect is known as
aliasing.
Consequently, proper sampling requires that the
samples be taken at a frequency of at least fN=2F. This
upper limit for the resolved frequency, known as the
Nyquist frequency, is determined numerically as



fN=1/2∆ t (or ∆x). Here, ∆t and ∆x represent the time
step and grid size, respectively.

In the practice of numerical computation, it is
necessary to sample at a rate much higher than that
given by the theoretical minimum. But as a rule, certain
factors restrict or eliminate possibilities for the choice
of the sampling frequency. Also, all physical signals
found in the real world contain components covering a
full frequency range with amplitudes diminishing
towards the highest band. All of these factors make the
exact reproduction of a continuous signal from the
sampled signal impossible. On the other hand, a priori
evaluation of the error of such reproduction via
knowledge about the sampling is possible and highly
recommended.

2.6. The spatial space windows for the test experiment.

As mentioned earlier, we consider, for the MM5
4DVAR model, six observation points in the central
area of the domain Figure 1. For the sake of simplicity,
their coordinates were shifted to the nearest model grid
points. This operation allows us to specify the
simulated observations and model variables at the same
location and to avoid using an observational operator
that could confound the studied effects.

Figure 2 shows the two-dimensional (in a horizontal
plane) spectral space window corresponding to the
spatial distribution of the six observing sites. Here the
distance and spatial frequency (inverse distance value)
are given in terms of the model ∆x and ∆y. The
corresponding Nyquist domain has a rectangular shape,
which regionally determines the area for valid analysis.
Only the lower frequencies should be considered for
the analysis, because the rest contain wrong
information that disturb the original signal (of the field
of interest). This distortion primarily happens on the
smallest scales corresponding to two to three model
grid steps.

However, close inspection of Figure 2 shows that there
is a still smaller area within this main Nyquist domain
which contains the scales undisturbed through
incompatibilities of model grid and observation
network resolutions. Near the main peak, one can see
two side lobes with a spectral power that reaches 80%
of the main one. These lobes correspond to the scales
of order 400-600 km (12-20 model grid units) and,
consequently, should mostly affect structures of such
size. Thus, the spectral transform method applied to the
continuous atmospheric fields ensures valid estimations
only for the large scale processes which correspond to
the area of smaller frequencies.  At the same time, the
false peaks which arise at the intermediate frequency

Figure 2. The two-dimensional spectral space window
corresponding to the present spatial distribution of six

observation locations indicated on Figure 1.

band (i.e. the mesoscale) have a numerical origin and
distort the corresponding  mesoscales.

3. Numerical results

The model and data assimilation runs have simulated a
series of atmospheric fields on the various model
vertical levels. The analysis of their statistics as well as
a description of the particular atmospheric pattern are
the subject for later investigation. Here we will only
perform an analysis of the features directly related to
the impact coming from the irregular data distribution
on the analysis fields. Figure 3 shows the first guess
temperature field for a mid-tropospheric sigma level
(Figure 3a), along with the temperature field obtained
as a set of optimal initial conditions when both the full
simulated observational set (for each model grid point)
(Figure 3b) and the "degraded" set (with only six
observational locations) (Figure 3c) were used in the
data assimilation scheme.

Figure 4 shows the differences between the first guess
and the corresponding optimal initial conditions
obtained with the use of the two data sets. Even a
cursory glance establishes that these differences are
significantly dissimilar. When the full set of
observations is utilized, the difference is mainly
concentrated in the area of the high gradients in the
original temperature field. There are also a number of



Figure 3. The temperature fields for a mid-tropospheric
sigma level corresponding to (a) first guess, (b) optimal
initial conditions obtained with using full simulated
observational set in each model grid point , and (c)
optimal initial conditions obtained with using "degraded"
six-point observation set.

Figure 4. The differences in temperature fields between
first guess and initial conditions obtained: (a)with using
the full simulated observational set in each model grid
point and (b) with optimal initial conditions obtained via
using the "degraded"  six-point observation set.

structures with various scales and minor amplitudes
spread over the whole domain. The other difference
field contains a considerably larger deviation in the
obtained initial conditions, predominantly around the
area where the observations have been provided in the
assimilation scheme. Additionally, there is a quasi-
circle or elliptical structure propagating out from the
area containing data in the form of a dispersive wave
trail. Finally, the difference field shows the presence of
structures with a scale of order 300-600 km (10-20
model grid steps). A description of such structures in
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the physical space is not immediately apparent. This is
in contrast to the spectral space, where complete
information contained in the physical space can be
found concentrated in the corresponding frequencies.

Figure 5 compares the spectra for two cross-sections
passing through the approximate core of the data area.
It clearly shows that these spectra are very far from
each other; primarily, the differences are related to the
spatial frequencies that roughly correspond to the false
side lobes seen in Figure 2. This confirms that the
various informational sources are not being utilized
within the data assmilation scheme appropriately
weighted for their spatio-temporal distribution,
resulting in structures that do not likely have a physical
basis.

4. Conclusions

The problem of optimal utilization of various
informational sources in data assimilation is examined
in this manuscript. It is shown that the
representativeness error of observations, in addition to
the instrumental error as well as the model error should
be considered through proper weighting. In the case of
an absence or incorrect accounting of different types of
data, an imbalance in the data assimilation can arise
and lead to an appearance of new structures in the
atmospheric fields. These patterns have no physical
basis, instead being born as a result of the numerical
features of the forward and assimilation models.

Simplified study allows specification, in general, of the
main features of such a contribution with respect to the
distribution of the observations that play a role of the
forcing. In our case, the response of the data
assimilation model on the new informational source is
reflected in the fluctuations extending out from the
source and asymptotically extinguishing toward the
boundaries. This is a specific feature of grid point
models that is recognized in sensitivity analysis
(Langland 1995). The critical point is that the
characteristics of the wave trail are mainly determined
by the model parameters, such as the model grid size
and time step. Thus, the new structure in the
atmospheric field which corresponds to the leading
mode of the particular numerical model is purely of a
numerical origin. Certainly, for spectral models one
should anticipate another type of response, because all
of the forcing energy will be distributed among modes
corresponding to the spectral coefficients, and thus
each mode could posses a smaller relative portion of
the energy compared to the dominant mode within a
gridpoint model.

Figure 5. The spatial spectra of field differences through
the approximate core of the data area. Numbers denote
a corresponding model grid index. FG - first guess, IC -

initial conditions.

Another feature of the response is the mesoscale
structures whose sizes roughly correspond to the false
side lobes in the spectral window obtained for the
specified observation network. They appear due to the
fact that an irregular distributed network is able to
amplify or suppress certain scales from the continuous
set (Kay 1993, Rabiner 1975). Alternatively, this
means that each particular observation network acts as
an antenna establishing priority to selective frequencies
(scales) and giving them, in default, higher weighting
coefficients when used within a data assimilation
context.

Although application of any data assimilation model is
intended to obtain "optimal" initial conditions on the
basis of all available information, the result does not
necessarily lead directly to an improved description of
the atmosphere at the initial time. This occurs because
the so-called "optimal" initial conditions are
determined through the local minimum in a cost
function under the constraints imposed.  In this case,
the closeness between "optimal" and "perfect" initial
conditions will, of course, be related to the accuracy of
various informational sources and the correctness in
prescribing the weighting coefficients for them.

Although the described approach has been applied to a
degraded observation net in a horizontal plane, we
anticipate the same numerical effects in the vertical
plane or in 3-dimensional space, when, for example,
horizontally high resolution satellite data is provided
on discrete vertical levels.
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