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1. INTRODUCTION

The rapid rotation and strong stratification of the at-
mosphere and oceans at mid-latitudes lead to a clear
separation between the advective time scales and the
inertia-gravity-wave (IGW) time scales. This time-scale
separation, characterized by a small parameter ε � 1
(essentially the Rossby number), implies that the flow
can remain close to a balanced state, free of IGWs.
Such a state is best thought of as a manifold of re-
duced dimensionality in the state space of the system
— a slow manifold. Balanced models (e.g. the quasi-
geostrophic model) then result from the projection of
the primitive equations onto such a manifold, and ini-
tialization procedures amount to the projection of ini-
tial data.

Using power-series expansions in ε, one can in prin-
ciple obtain a hierarchy of slow manifolds,Mn say, by
truncation at some power εn. Trajectories of the prim-
itive equations then remain (for a finite time) within
an O(εn) distance of Mn. Were this procedure to
converge, one could define the slow manifoldM∞, an
exactly invariant manifold on which the motion is en-
tirely devoid of IGWs.

However, it has become clear that such an exactly
invariant slow manifold does not exist in general, and
that balanced motion, however well initialized, spon-
taneously generates IGWs. This is consistent with of
the possible definition of the (approximately invariant)
Mn for arbitrary n because the expansion procedures
are divergent, and because the amplitude of the IGWs
that are generated is smaller than any order εn. Typi-
cally, one expects wave amplitudes to be exponentially
small, scaling like exp(−α/ε) for some α > 0.

The conclusions just outlined have been drawn us-
ing a combination of numerical and analytical results,
mostly for low-order models (e.g. Bokhove & Shepherd
1996, Camassa & Tin 1996 and references therein).
The analytic results are mainly upper bounds on IGW
amplitudes. What appears to be lacking, however,
are explicit estimates of these amplitude in the regime
most relevant to geophysical fluids, namely the quasi-
geostrophic regime, with small Rossby and Froude
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numbers, both of a similar order of magnitude. This
abstract reports on the asymptotic derivation of such
estimates in two simple models.

To capture the amplitude of IGWs spontaneously
generated by balanced motion, the techniques of expo-
nential asymptotics, or asymptotics beyond all orders,
must be used. By associating the generation of IGW to
a Stokes phenomenon, these reveal the importance of
considering complex values of the time variable t and,
specifically, of identifying the complex values of t for
which the balanced motion becomes singular.

2. LORENZ’S 5-COMPONENT MODEL

The system of ordinary differential equations

u̇ = −vw + εbvy, v̇ = uw − εbuy,
ẇ = −uv, εẋ = −y, εẏ = x+ buv,

was derived by Lorenz by truncation of the shallow-
water equations (see Lorenz & Krishnamurthy 1987).
In the quasi-geostrophic regime, with ε � 1 and
b = O(1), it is easy to derive equations for the slow
manifoldsMn; these are given by the (asymptotic but
divergent) series

x = −buv + ε2b(uv3 − u3v − 4uvw2) + · · · ,
y = εb(u2 − v2)w + · · · .

Truncating these expansions optimally, one can define
the balanced contribution (xbal, ybal) to (x, y) and, by
subtraction, the IGW contribution, expected to be of
the form

(xigw, yigw) ≈ C(cos(t/ε+ φ), sin(t/ε+ φ))

for some C and φ.
Now, the evolution of a balanced initial condition,

with C = 0, leads to the generation of IGWs and thus
to an exponentially small C > 0. This is exemplified in
Fig. 1 for a particular balanced initial condition near the
homoclinic solution that exists for (u, v, w) when ε = 0.
The change in C occurs abruptly, in an ε1/2 neighbour-
hood of the intersection of the real t-axis with a Stokes
line joining complex conjugates poles of (u, v, w) in the
complex t-plane. (For the solution of Fig. 1, these are
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Figure 1: Evolution of y for b = 0.5 and ε = 0.1, 0.125
and 0.15 (successively offset by 0.01).

at t = ±iπ/2, so C changes near t = 0.) Using expo-
nential asymptotics, we show in Vanneste (2003) that
the amplitude of the waves generated is

C ∼ ε−2f(b) exp(−α/ε),

where α is the distance of the poles of (u, v, w) to the
real t-axis, and the nonlinear function f(b) is deter-
mined by a convergent recurrence. Numerical experi-
ments confirm this result.

3. SHEARED DISTURBANCES

The sensitivity of exponentially small effects to model
details suggests that the wave generation in Lorenz’s
model could be an artifact of the truncation used for
its derivation. Reassurance that this is not the case
is provided by joint work with I. Yavneh in which the
3-D Boussinesq equations are considered (Vanneste &
Yavneh 2003). Specifically, we examine the evolution
of sheared disturbances superimposed to a horizontal
Couette flow u = (Σy, 0, 0). The vertical vorticity of
these disturbances has the form

ξ(t) exp[i(kx+ ly +mz)] + c.c.,

with l = −Σkt as a result of the shear. The complex
amplitude ξ(t) satisfies a linear second-order inhomo-
geneous equations.

As in Lorenz’s model, a balanced contribution to ξ(t)
can be defined using an optimally truncated asymptotic
series with ε = |Σ|/f as small parameter; the remain-
der takes the form of waves, with

ξigw(t) ∼ C exp(iωt/ε+ φ),

where ω/ε is the IGW frequency. Exponential asymp-
totics indicates that a (balanced) solution with C = 0
for t < 0 results in

C ∼ ε−1/2β exp(−α/ε) > 0
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Figure 2: IGW amplitude C as a function of 1/ε for
sheared disturbances.

for t > 0. Here, α and β are given explicitly in terms
of elliptic functions of m/k and f/N . A comparison
between this estimate and the results of numerical ex-
periments in shown in Figure 2. Interestingly, the wave
generation is stronger (by an O(1) factor) for anticy-
clonic shear than for cyclonic shear.

4. CONCLUSIONS

A crucial factor for the generation of IGW is the loca-
tion of singularities of the balanced motion in the com-
plex t-plane. When these lie at some finite distance
of the real t-axis, the IGWs are exponentially small in
ε. Future work will examine whether this conclusion,
which has emerged from the study of low-order models,
also holds for partial differential equations.
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