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1. INTRODUCTION

Driven by a need to understand the propagation
and stability of abyssal ocean currents, there have
been numerous idealised studies examining the dy-
namics in a rotating frame of reference of dense
fluid on a slope underlying a less dense ambient
fluid. This circumstance is characteristic, for exam-
ple, of the Denmark Strait Overflow and the West-
ern Boundary Undercurrent. A starting point of
many theoretical and numerical studies has been
to assume the ambient is stationary and the cur-
rent moves initially at a constant speed set by
geostrophic balance. However, recent laboratory
experiments (e.g. Lane-Serff and Baines (1998))
have shown that the continuous injection of a dense
current from a localised source can significantly ac-
celerate the ambient fluid and the consequent in-
teraction between the two moving fluids cannot be
neglected.

We have performed a series of laboratory exper-
iments designed to examine the temporal as well
as spatial stability characteristics of an axisymmet-
ric current on a sloping bottom with an overlying
non-stationary ambient (Sutherland et al. (2003a;
2003b)).

2. EXPERIMENTAL SET-UP

The experiments were performed on a 1 metre
diameter rotating table. A 2 metre tall superstruc-
ture is fastened to the table to which cameras, light-
ing, and a fluid reservoir are mounted. A cylindrical
acrylic tank with an inner diameter of 90.7 cm and a
height of 30.0 cin was centred on the table. Conical-
shaped bottom topography was fixed to the bottom
of the tank. The cone had height H. = 3.0 cm and
radius Rt = 45.0 cm, as shown in Figure 1.

An annulus of width Wy = 0.9cm and mean
radius Ry = 15.0cm encircled the cone. It was
through this annulus that fluid was injected dur-
ing the course of an experiment to create a gravity
current on a sloping bottom.

With the apparatus in place, the tank was filled
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FIG. 1. a) Side view and b) top view schemat-
ics of tank and apparatus used to introduce an
axisymmetric dense current in a rotating ambient
fluid. Relevant dimensional parameters are also il-
lustrated.

to depth Hp with fresh water of density po. A
reservoir containing a dyed salt-water solution was
stationed at a height of 2 m above the bottom of
the tank. When a valve was opened, this fluid was
injected into the center of the cone and ultimately
upwards through the annulus.

There were four parameters that we adjusted in
a range of experiments. These were the rotation
rate of the table, (2, the initial depth of the fresh
water in the tank before it rotates, H, the density
of the fluid in the reservoir, p;, and the injection
time Tan

So that large surface deflections and fast downs-
lope motions are avoided, most of our analyses are
is performed for experiments with @ < 1.0 and
o = 1000(p1 — po)/po = 0.7.

A digital still-camera was used to take snapshots
of the experiment from the side and from a top per-
spective angle. A grid of horizontal lines on one side
of the tank was used to identify vertical distances



FIG. 2. a) Perspective view and b) side view of
an experiment in which the dyed dense current be-
comes unstable. The experimental parameters are
Q=1.0s""t, Hp = 15cm, 0 = 1.07 and Tinj = 30s.
The horizontal lines in b) are spaced vertically by
5cm. The horizontal extent of the image in b) has
been magnified with respect to that in a).

and so measurements of the height of the dyed cur-
rent could be made from the side view snapshots.
For example, Figure 2 shows snapshots taken in a
typical experiment in which the dense current be-
comes unstable to 5 wavelengths around the annu-
lus.

As well as the still-camera images, the experi-
ments were recorded continuously in the co-rotating
frame by a COHU CCD camera mounted 2 m above
the table. These images were digitized and analyzed
using the software “Diglmage” ((Dalziel 1993)).
Surface tracers were used to record the surface flow
speed. In experiments in which the current became
unstable, the wavelength and phase speed of the
instability were also measured.

3. QUALITATIVE OBSERVATIONS

In successful experiments, the fluid emerged ap-
proximately uniformly around the annulus and as-
sumed a dome-shaped axisymmetric structure. Co-
incident with the building up the current is the de-
velopment of an Ekman layer. This is apparent,
for example, in Fig. 2b as the thin (approximately
1lmm deep) tongue of dyed fluid moving radially in
advance of the domed current.

As soon as the fluid injection begins, an axisym-
metric current develops in the overlying ambient
fluid. This is visualised by the motion of passive
tracers on the surface.
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FIG. 3. Time series determined around a circle of
radius 18 cm. O increases in a counter-clockwise di-
rection around the ring. Experimental parameters
are the same as those given in the caption of Fig. 2.

The dynamics of the current and surface flow are
neatly summarised by circular time series images
such as the one shown in Figure 3. The time series
is constructed by recording over time the evolution
of the flow around a ring of radius Rrs = 18cm,
moderately wider than the mean radius of the an-
nulus.

Soon after the injection begins, the Ekman layer
reaches this ring. This is apparent from the uni-
form darkening of intensities around it. A short
time later, a periodic pattern of even darker inten-
sity regions appears. These reflect the unstable un-
dulations in the dense current at » = 18cm, and
their slope in the space-time plot gives the speed of
propagation of the instability. The negative slope
indicates the instability progresses in a clockwise
direction, opposite to the direction of rotation of
the table: the instability is anticyclonic.

Also apparent in Fig 3 are white streaks, which
are formed by the approximately circular motion of
the surface tracer particles. The streaks form lines
with the same slope as the underlying dark intensity
regions. Thus the surface flow and, presumably, the
whole vertical column of the ambient fluid moves
at the same speed as the instability. In general,
very little motion is observed for particles between
the center of the tank and the inside edge of the
annulus, whereas the particles on the outside edge
of the annulus move substantially as soon as dense
fluid is injected.

This observation indicates a significant difference
between the initial conditions of the experiments
and those imposed in the theories of Swaters (1991)
and Griffiths et al. (1982) who assumed an initially
stationary ambient layer overlying a geostrophically
balanced current. In the experiments not only is the
ambient flow non-stationary, but the equal surface
flow speeds and unstable mode phase speeds indi-
cates that the ambient region significant affects the
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FIG. 4. Regime diagram showing stability of cur-
rent as a function of nondimensional current width
and depth. Solid circles indicate experiments in
which the current remains stable. Other sym-
bols are drawn for experiments in which the flow
becomes unstable to a mode with wavenumber 4
(open triangles), wavenumber 5 (open squares) and
wavenumber 6 (crosses).

instability dynamics.

4. QUANTITATIVE ANALYSIS

The stability regimes are indicated in Fig. 4,
which illustrates whether instability occurs as a
function of the depth D and width W of the current.
Both axes are made nondimensional by the total
fluid depth H and the Rossby radius Lg = (¢'h)'/?,
respectively. Here h = [D(H — D)]*/2. In general
we find the current is stable (as indicated by the
solid circles) if either of W/Lg or D/H is small.

In experiments in which instability occurs typi-
cally the current breaks into unstable modes with
wavenumbers, N, typically between 4 and 6, as
indicated by the different symbols in Fig. 4.

We compare the wavenumber and phase speed
of the observed modes with those predicted by
Choboter and Swaters (2000), examining in partic-
ular how the number of waves of instability and the
relative phase speed varies with the “Swaters inter-
action parameter” p = D/(HS). This is a measure
of the destabilizing effect of baroclinicity relative
to the stabilizing effect of the beta-plane slope. In
their theory, p must be of order unity. Nonetheless
they extrapolate their results to large p.

Assuming a stationary upper layer, Choboter
and Swaters (2000) predict that the flow is unsta-

ble for all p and that N, increases with u. For
example, they find N, increases from 5 to 15 as
increases from 1 to 10. As shown in Figure 5a, we
find that the observed wavenumber does not vary
significantly with p. Possibly there exists a weakly
increasing trend, but the data are too scattered to
draw any definitive conclusions.

The phase speed predicted by Choboter and Swa-
ters (2000) also differs. They predict that the ratio
of the phase speed to Nof speed, Cnof = g's/f,
should be approximately unity for a wide range of
interaction parameters. However, as shown in Fig-
ure 5b, we find that the phase speed is an order of
magnitude smaller than the Nof velocity for small
u. For large p the relative phase speed varies be-
tween 0.1 and 1.

The reason for the discrepancy is that, at least
in experiments with small o, the evolution of the
current is governed not by the baroclinic dynamics
of the current but by the barotropic dynamics of
the surface flow.

A crude theory allows us to estimate the charac-
teristic azimuthal (linear) speed, Cj, of the surface
flow. Ignoring the beta-plane dynamics induced
by the slope, we compute the initial potential vor-
ticity of the fluid directly over the annulus to be
Qo = f/H. Now suppose the injected fluid com-
presses the upper layer to a depth of H — D. For
conservation of potential vorticity, anticyclonic vor-
ticity, ¢ < 0, must develop in the upper layer. Using
the shallow water expression for potential vorticity,
Q = (f +¢)/(H — D), its conservation requires

¢=-12 1)

Because this region of induced vorticity forms a
current around a circle of radius Ry, we write
¢ = 2(27/T) where the period T' = 27 Ry /C(y. Thus
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FIG. 5. a) Number of waves of instability and b)
nondimensional phase speed both plotted as func-
tions of the interaction parameter u, which mea-
sures the relative importance of baroclinicity for
destabilization of the current.
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FIG. 6. Phase speed of the unstable modes ver-
sus estimated upper-layer speed determined from
PV conservation arguments. Different symbols are
plotted depending on the relative density of the in-
jected fluid: solid circles for ¢ < 8, open triangles
for 8 < o < 16, open squares for 16 < o < 64, and
crosses for 0 > 64. The dotted line represents the
best fit line through data with o < 8 (solid circles).
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If the instability of the lower current is indeed
controlled by barotropic instability of the surface
flow, we expect that C),, should be proportional to
Cp- In Figure 6 we plot C}, versus C(y, with both
axes normalized by the shallow water speed based
on the total fluid depth H.

For relatively low density currents, plotted with
solid circles in the figure, the phase speed clearly
increases with C(j. Indeed, a best fit line through
these points gives a slope of 0.94 &+ 0.08, which is
consistent with the expected slope of 1. For cur-
rents with large densities, ¢ > 64, the phase speed
is found to be approximately constant.

A transition to new, presumably baroclinic, dy-

Cy=

namics occurs for ¢ = 16. These are captured nei-
ther by eq. (2) nor by existing baroclinic theories
that neglect the induced motion of the ambient fluid
(e.g. Swaters (1991)).

5. CONCLUSIONS

We have constructed a novel experimental ap-
paratus that allows us to examine bottom-dwelling
dense axisymmetric currents without explicitly dis-
turbing the surface as one would, for example, by

rapidly extracting two concentric cylinders in a
standard lock-release mechanism.

Instability is observed in experiments with bot-
tom flows that are sufficiently deep compared with
the total fluid depth and sufficiently wide com-
pared with the Rossby radius Lg. If the density
of the bottom current is relatively small, the ob-
served instability of the current is driven entirely by
barotropic instability of the surface jet in a manner
that can be understood by potential vorticity con-
servation arguments.

For currents that are more dense (¢ ~ 16), no
theory presently exists that predicts the unstable
characteristics of a dense current with a overly-
ing non-stationary ambient. In ongoing research
we will develop a better understanding of this sys-
tem through analysis of numerical simulations that
model the bottom injection of fluid.
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