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1. INTRODUCTION

The diagnostic of the energy cycle in the atmosphere is
based on the concept of available potential energy (APE).
The classical theory of APE (Lorenz 1955) accounts only
for thermal constraints, but not for momentum constraints.
However, there are cases where the motion is usefully
constrained by momentum or angular momentum conser-
vation (e.g. quasi-steady symmetric circulations, such as
the zonal–mean flow in the atmosphere and hurricanes),
for which the classical theory gives an overestimate of the
APE and, under certain conditions, fails to correctly diag-
nose the circulation from a causal point of view.

In the present study a revised theory of APE for sym-
metric circulations is developed. Our approach is based
on the concept of pseudoenergy, which arises from the
underlying Hamiltonian structure of the equations of at-
mospheric fluid dynamics (Shepherd 1990). The concept
of APE is generalized to a non-resting reference state,
thereby incorporating momentum constraints. The theory
is presented in detail in Codoban and Shepherd (2003).

2. BACKGROUND

2.1 Governing equations

We work out the theory for the case of the non-
hydrostatic, f -plane Boussinesq equations, to illustrate
the approach. We consider the x-averaged equations,
with no explicit dissipation, and treat the eddy fluxes as
forcings. By the non-divergence property of the merid-
ional flow we introduce a streamfunction ψ in the y-z
plane such that v = −ψz, w = ψy. By writing the equa-
tions in the Transformed Eulerian Mean (TEM) format the
forcing in the thermodynamic equation consists only of
the diabatic heating R, the forcing in the x-momentum
equation is the EP flux divergence X, and ψ represents
the TEM circulation.

We analyse the system with respect to a time-
independent reference state (RS) defined by

ψ ≡ 0, m = M(y, z), θ = Θ(y, z), (1)

and obeying thermal-wind balance Mz = −(g/fθ0)Θy.
Here m ≡ u− fy is the absolute momentum and θ is the
departure of potential temperature from a constant basic
state value θ0. At finite amplitude the system reads

m′

t + ∂(ψ′,M +m′) = X, (2)
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v′t + ∂(ψ′, v′) = −p′y − fm′, (3)

w′

t + ∂(ψ′, w′) = −p′z + (g/θ0) θ
′, (4)

θ′t + ∂(ψ′,Θ + θ′) = R. (5)

Here m′, θ′, v′, w′, ψ′ are the disturbances around the
corresponding RS values, p′ ≡ p∗ − p∗RS, with p∗ ≡
p/ρ0 + f2y2/2, the subscripts denote partial derivatives,
∂(g, h) ≡ gyhz − gzhy is the two-dimensional Jacobian
operator, and we neglect for now the eddy forcings in (3)
and (4).

2.2 Available energy

In the conservative case, when X = 0 = R, the Hamilto-
nian of the system (2)–(5) is given by

H =

���
D � 1

2
|∇ψ|2 +mfy −

θgz

θ0 � dydz, (6)

with ψ = 0 at the boundaries (Cho et al. 1993). Beside
the energy itself, the system also has a class of Casimir
invariants of the form

C =

���
D

C(m, θ) dydz. (7)

The arbitrary function C(· , ·) has to be chosen in such a
way that the conserved quantity H+C defines a positive-
definite measure of disturbance energy relative to the RS
(1). Hence, the RS must be a conditional extremum for
H + C, which requires the functional derivatives to obey

δH

δm
= −

δC

δm
,

δH

δθ
= −

δC

δθ
, (8)

when evaluated at the RS. The pseudoenergy is given by

A = H + C −HRS − CRS, (9)

with HRS and CRS the energy and Casimir, respectively,
evaluated at the RS. The APE is the non-kinetic part of A
(see Shepherd (1993) for details).

3. DIAGNOSTIC THEORY

We first study the semi-geostrophic approximation of a
nearly symmetric balanced flow, by which (3) is replaced
by geostrophic balance, (4) by hydrostatic balance, and
the disturbances obey the thermal-wind balance

m′

z = − (g/fθ0) θ
′

y. (10)

It follows that the kinetic energy density (KE) of the

meridional circulation,
1

2
|∇ψ|2, is neglected.



3.1 Small-amplitude analysis

The governing equations consist of (2), (5) (with m′, θ′

dropped from the lhs Jacobians) and (10). The small-
amplitude theory is valid if Ro ≡ u′/f` � 1 (` is a char-
acteristic horizontal length scale), where Ro is defined by
u′, not by u itself.

In this case, the APE density is given by

APE =
1

2 � Cmm(m′)2 + 2Cmθm
′θ′ + Cθθ(θ

′)2 � , (11)

where C(·,·) are the second derivatives of the Casimir
density evaluated at the RS. For X = 0 = R the APE
is conserved, while for X 6= 0 and R 6= 0 we get

d

dt

���
D

APE dydz=

���
D � Cmmm

′+Cmθθ
′ � X dydz	 
�� 


SX

+

���
D � Cmθm

′+Cθθθ
′ � Rdydz	 
�� 


SR

≡ S, (12)

where SX (SR) is the mechanical (thermal) source (or
sink) of APE, respectively. The local form of (12) is

(APE)
t
+ � (g/θ0)θ′ψ′ �

y
+ � fm′ψ′ �

z
= S, (13)

where S is the density of S.

3.2 Finite amplitude and inclusion of inertia terms

At finite amplitude the system consists of (2), (5) and (10).
The density of APE is given by

APE = C − CRS − CRS
m m′ − CRS

θ θ′, (14)

and the local form of its time tendency equation is

(APE)t+∂(ψ′,APE)+� (g/θ0)θ′ψ′ �
y
+� fm′ψ′ �

z
=S, (15)

where

S = (Cm − CRS
m )X + (Cθ −CRS

θ )R. (16)

The semi-geostrophic approximation is valid as long as� u′/f` � � f2`2/N2h2 � 2 (r/f)2 � 1, where h is a char-
acteristic vertical scale, and r is the adiabatic damping
rate. The second factor is the square of the inverse of the
Burger number, which is O(1) in QG scaling.

To include the inertia terms one has to consider the
full Hamiltonian (6). The governing equations are (2)–(5),
and for the pseudoenergy density A we obtain

A=KE+APE=
1

2
|∇ψ′|2+C−CRS−CRS

m m′−CRS
θ θ′. (17)

For the time tendency equations of APE and KE we get

(APE)t + ∂(ψ′, APE) = −CT − CM + S, (18)

(KE)t + ∂(ψ′, KE + p′) = CT + CM , (19)

where S is given by (16) and

CM = −fm′v′, CT = (g/θ0)θ
′w′ (20)

are the KE ↔ APE conversion terms. Thus the inclu-
sion of the inertia terms does not change the source/sink
terms in the energetics, but introduces a kinetic energy
component (of the flow in the y-z plane) with thermal (CT )
and mechanical (CM ) conversion terms between the ki-
netic and available potential energy.

4. APPLICATION

We consider the case of a symmetric zonal flow with a
negative zonal force driving a positive meridional flow.
The diabatic heating is given by the Newtonian cooling
approximationR = −r(θ−θrad), where the radiative equi-
librium temperature profile is

θrad(y, z) = − (fθ0λ/g) y + � N2θ0/g
� z. (21)

From the point of view of causality this is a mechanically
driven circulation with thermal damping.

We analyze the circulation in the small-amplitude ap-
proximation, with respect to two different RS. For a non-
resting RS we take M(y, z) = λz − fy, Θ = θrad. For a
resting RS we take instead U = 0, Θ = � N2θ0/g

� z, so
that M(y) = −fy. The forcing is given by

X=α � f L
H

cos � πz
H � cos � πy

L � −λ sin � πz
H � sin � πy

L ��� , (22)

in the domain 0 ≤ z ≤ H,−L/2 ≤ y ≤ L/2. One has to
take λ = 0 in (22) in the case of the resting RS, in order
to get the same solution for the streamfunction.

For the non-resting RS we find that in a steady state

SX =
α2HL

4r(N2−λ2) � N4+2N2λ2+f2λ2 L
2

H2 � . (23)

We see that SX > 0 (since N2 > λ2, as follows from the
criteria of symmetric stability) so the circulation is always
diagnosed as mechanically driven and thermally damped.

With the resting RS (Lorenz theory) we find instead

SX = HL � N2α2

4r
−

4αfλL

π3 � , (24)

which shows that the circulation is diagnosed as ther-
mally driven and mechanically damped for sufficiently
small α (i.e. for sufficiently weak forcing), which contra-
dicts causality.
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