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1. INTRODUCTION

It has been a long-standing problem of atmospheric
prediction that the insertion of observations into prim-
itive equations (PE) models excites spurious inertia-
gravity waves. Conventionally, this problem has been
treated by initialization methods, which separate the
motion into its normal components, and then project
the initial model state onto the hypothetical manifold
of purely slow motion. The so-called “slow manifold”
is defined as the subspace of possible motion where
the fast components of the motion are slaved to the
slow components.

Daley and Puri (1980) argued that direct insertion
of observations into models would almost always de-
stroy the dynamical balance in a PE model. They
pointed out that advanced data assimilation schemes
should seek the most likely balanced state, given the
observations, and suggested making balance a con-
straint on the fit between model and observations.

When observations are assimilated into models,
the analysis xa is given as a linear combination of
the model forecast xf and observation increment or
innovation (where z is the observation):

xa = xf + K(z−Hxf ). (1)

H is an operator which maps the model variables to
the observation locations. Assimilation schemes dif-
fer in how they estimate the combination of the fore-
cast and innovations. The weights K given to the
innovations at each analysis variable and gridpoint,
depend upon the relative observation and forecast er-
rors. The accuracy of an assimilation scheme there-
fore depends on its ability to model the error covari-
ances.

Conventionally, the analysis step is followed by a
separate initialization step, with the assumption that
the resulting forecast will stay balanced until the next
observation. Artificial balance constraints can also be
added to the covariance model (e.g., Kalnay, 2003,
and Daley, 1991).
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Four-dimensional assimilation schemes, however,
weave the analysis step into the dynamics of the fore-
cast model, in effect calculating the most likely state
in time, and evolving the covariance model according
to the model dynamics.

We therefore expect that, if the true state is bal-
anced and the forecast model is sufficiently accurate,
the four-dimensional analysis will be balanced as well.
However, even if the model is perfect, errors in the
observations will project onto all timescales, and it is
not clear whether the analysis will indeed remain bal-
anced. In this study, we apply the Extended Kalman
Filter (EKF) analysis to a perfect model, imperfect ob-
servations, and a balanced truth state, in order to test
how well the assimilation scheme represents dynam-
ical balance.

2. SIMULATIONS

2.1 The Lorenz Model
Lorenz’s (1986) model (and the subsequent exten-

sion by Wirosoetisno and Shepherd, 2000) is derived
from a triad expansion of the shallow water equations:
It has a two independent vortical modes and a linear
inertia-gravity wave.
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Here φ is related to the potential vorticity of one mode,
w′ represents vorticity of the other mode, x diver-
gence, and z′ free-surface height. The model admits
two modes of motion: a vortical mode that varies on
a timescale of O(1), and an inertia-gravity wave with
frequency 1/ε. The primes on the divergence and
height terms denote that these variables are mixtures
of the gravity and vortical modes, while φ is a purely
slow, and x a purely fast variable. They are clearly



separated when ε = Rob/
√

(1 + b2), where Ro is the
Rossby number and b the rotational Froude number
for the wavelength of the gravity wave, is small. For
convenience, α = (1 + b2)−1/2. C has an artifical
time-dependence, added by Wirosoetisno and Shep-
herd in order to make the slow dynamics chaotic, and
thus simulate the presence of other vortical modes.

If we transform w = w′ + bz′ (corresponding to
potential vorticity) and z = z′ − bw′ (corresponding
to geostrophic imbalance), we attain a normal-mode
version of (2):
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In the above model, x and z contain the grav-
ity wave, and φ and w are entirely slow variables.
Wirosoetisno and Shepherd approximated balanced
dynamics by slaving the fast variables to the slow. To
second order, these are given by

Ux = − ε
2
Cb sin 2φ+O(ε3)

Uz = ε2(Cbw cos 2φ+
C ′

2
b sin 2φ) +O(ε3). (4)

where C ′ is the time-derivative of C.
When the model is initialized such that x = Ux and

z = Uz, its trajectory stays on the slow manifold (with
O(ε2) accuracy) for long times (see Wirosoetisno and
Shepherd for details).

We chose the particular solution of (2) with initial
conditions φ = −0.50 and w′ = 0.37 (with x and z′

given by their corresponding values using (4)), as the
“truth”, which is on the slow manifold. We choose
ε = 0.1 throughout this paper. We then perturb the
initial conditions slightly to produce the initial forecast.
Since the slow dynamics are chaotic, the model will
quickly diverge from the reference solution unless ob-
servations are added regularly.

We generate observations of one of the four model
variables by perturbing the truth state by a random
gaussian error. Writing the observation vector z as
xobs,

xobs = Hxtk + σobsbk (5)

where bk is N(0, 1), and the brackets denote an aver-
age over the statistical distribution. H is here simply a
matrix of zeros and ones, which selects the variable to
be observed. The observations are then assimilated
in time using the EKF.

2.2 The Extended Kalman Filter
Writing the model (3) as a nonlinear operatorMk(xk),
the forecast at each time step is evolved from the
analysis of the previous timesp:

xfk+1 = Mk(xak). (6)

If an observation was made at the kth time step, xak is
given by (1). If there was no observation, then xak =
xfk .

The forecast covariance matrix is defined as

Pf
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To find the evolution of the error, we expand (6) as a
Taylor series about the analysis state:
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Since (7) is a statistical average, the Taylor expansion
for Pf will involve higher and higher statistical mo-
ments, and will be very computationally expensive.
We therefore truncate (8) at first order and, defining
the tangent linear model,

Mk =
∂Mk(xak)

∂x
, (9)

we approximate the evolution of the covariance matrix
as

Pf
k+1 = MkP

a
kM

T
k (10)

The Kalman gain matrix, K, weights the innova-
tions by the relative magnitudes of the observation
and forecast error covariances:

Kk = Pf
kH

T
k (HkP

f
kH

T
k + Rk)−1, (11)

where R is the observation error covariance matrix.
The covariance matrix for the new analysis is then

given by

Pa
k = (I−KkH)Pf

k . (12)

The EKF analysis (1) is performed every time an
observation is made, and the resulting analysis is
then advected forward in time according to (6). Since
we also advect the covariances (equations 9 and 10),
the analysis at each observation step is a best fit be-
tween the current estimate and all prior observation
increments.

In effect, the model trajectory is forced off the slow
manifold every time an observation is made, because
the observation errors project onto all scales, includ-
ing the fastest ones. Since this intermittent analysis
is always an estimate, the resulting analysis trajectory
does not necessarily have to be balanced, even if the
true state is balanced.



3. RESULTS AND IMPLICATIONS

3.1 Loss of Balance in the EKF Analysis
Figure 1 shows the result of the EKF analysis for the
mixed-timescale vorticity variable w′ and the pure fast
variable x, given observations of w′, for two differ-
ent observation frequencies and two different obser-
vation errors. We could observe any of the model
variables, but choose w′ as an example here, since
it is a mixed variable, and real observations are of
mixed timescales. Figure 1a shows the analysis for
observations every time unit (corresponding to every
100 timesteps), and a mean observation error of 0.1
(corresponding to roughly 10% the amplitude of w′).
While the analysis tracks the low-frequency evolution
of w′ and x, it also contains a fast oscillation, which
is not present in the balanced true state. Increasing
the observation frequency (Figure 1b) seems to con-
trol the unbalanced motion for some time, but at later
times, the high-frequency oscillation reappears, and
with greater amplitude. However, increasing the ob-
servation accuracy to 0.01 (Figure 1c) is sufficient to
restore balance. The initial imbalance in the forecast
state for t < 10 is quickly removed by the analysis.

3.2 Tracking the Vortical Mode
Figure (2) shows the same three analyses for the pure
slow potential vorticity variable φ. For cases (a) and
(b), the EKF tracks the slow mode for some time, but
eventually loses the model’s transition into a slightly
different evolution. This is somewhat similar to the
results of Miller and Ghil (1994), who found that the
EKF was unable to track transitions between the two
attractor points in the 3-component Lorenz model, if
observations were not frequent or accurate enough.

In our case, the EKF loses the φ trajectory because
the incorrect analysis of φ still fits the observations of
w′. Increasing observation frequency, therefore, does
not improve the analysis. More accurate observations
(Figure 2c) again solve this problem.

4. A Modified Analysis

We now discuss possible modifications to the assimi-
lation scheme in which balance is made a strong con-
straint on the analysis equation. In order to constrain
the unbalanced motion, we transform the model (2)
to its normal-mode form (3), and define the analysis
variables as the slow variables φ and w, and the un-
balanced components of the motion,

x̃ = x− Ux (13)

z̃ = z − Uz (14)

where Ux and Uz are given by (4). For a completely
balanced state, we have

x̃ = z̃ = 0. (15)

The analysis step (1) can now be changed such
that we analyze y = (φ,w, x̃, z̃)T, and then transform
the resulting analysis back to the original model vari-
ables, x = (φ,w′, x, z′)T. The analysis step (1) be-
comes

ya = yf + Ky[xobs − f(yf )], (16)

and is followed by the the transformation to model
variables,

xa = f(ya) =
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Ky is the Kalman gain matrix in analysis space, and
in order to calculate it we need to transfrom model-
space error covariances to analysis-space error co-
variances, which requires a linearization of f(y) simi-
lar to (9). Defining
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∂y
, (18)

we have
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and
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The balance constraint is applied by combining (17)
with (15), such that

xa = g(y) =
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 . (21)

Figure 3 shows the resulting analyses of w′ and x,
given observations of w′ every time unit, with a mean
observation error of 0.1. The analysis is now explicitly
balanced for all times. The corresponding analysis
of φ (figure 4), however, still loses the true trajectory
after some time.

Note that we have inserted the balance assumption
only into the analysis-transformation step (17), but not
into the transformation of the covariances (19). It is
also possible to modify (18) and (19) to include (15);
this is equivalent to analysing only φ and w and ne-
glecting all covariance terms that involve x̃ and z̃ in
(19).

However, in our case this approach yields a highly
unstable analysis trajectory, because Pf now ne-
glects part of the information from the observation in-
crement, and thereby causes insufficient and unphys-
ical terms to appear in the Kalman gain (20).



5. Conclusions

This study points out, in the context of a simple model,
a possible weakness in 4D assimilation: because the
error covariance model is produced by the dyanmics,
the resulting analysis can be unbalanced even when
the true state is not. In section 4 we have enforced
balance in our analysis diagnostically, immediately
following each analysis step. We point out, however,
that a simple slaving approximation such as (4) may
not be known in realistic models. It will therefore be
very important to understand, for realistic models and
data, how well the EKF and its covariance model can
represent the dynamical separation of timescales. It
may also be instructive to compare the above results
to similar analyses using other 4D schemes, such as
as the Ensemble Kalman Filter and 4DVAR.
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Figure 1: Comparison between the “truth” trajectories
of w′ and x (dotted line), and the EKF analysis, ob-
serving w′. x is offset by −1.5 for clarity. (a) With
observations every time unit and σobs = 0.1, (b) with
observations every half time unit and σobs = 0.1, and
(c) with observations every time unit and σobs = 0.01.
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Figure 2: Comparison between the “truth” trajectory
of φ (dotted line) and the EKF analysis for the same
three cases (see previous plot).
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Figure 3: Comparison between the “truth” trajectory of w′ and x (dotted line), and the modified EKF analysis,
with observations of w′ every time step, and σobs = 0.1. x is offset by −1.5 for clarity. The resulting analysis
remains balanced.
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Figure 4: Comparison between the “truth” trajectory of φ (dotted line) and the modified EKF analysis, with
observations of w′ every time step, and σobs = 0.1.


