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1. Introduction

It is generally assumed that the barotropic vorticity
equation applied to an upper tropospheric level can de-
scribe the low-frequency behavior of the atmosphere.
Quantitative agreement with observations has, how-
ever, been lacking. In an effort to improve the quan-
titative agreement we developed an empirically mod-
ified barotropic model that includes baroclinic effects
by using the conservation of potential vorticity (PV, q)
instead of absolute vorticity. The modification of the
barotropic operator amounts to estimating the spectral
relationship between PV and streamfunction (ψ) by lin-
ear regression, and using this empirical relation instead
of the more familiar barotropic squared wavenumber.

In this paper, we explore some theoretical underpin-
nings for the empirical relationship used in our model.
We use the quasi-geostrophic (QG) framework as the
basis for these calculations. First, we solve the Green’s
function problem for PV in the interior of a QG tropo-
sphere. In addition, we solve the same problem but for
PV located on the tropopause, with a QG troposphere
below and a more stable QG stratosphere above.

In both cases, the free parameters of the problem
can be adjusted so that the empirical spectral q − ψ
relationship may be largely recovered. It is argued that
the empirical operator may be considered as one of
these well understood QG models.

2. Spectral operators

Using the conservation of Rossby-Ertel potential
vorticity in a frictionless, adiabatic atmosphere, a gen-
eralized model may be constructed that applies at a
single atmospheric level:

∂q

∂t
+ J(ψ, q) = 0, q = Lψ,

where ψ is the streamfunction, J is the Jacobian op-
erator, and L is a linear operator. For the standard
barotropic model L = ∇ 2.
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To estimate the spectral relationship between po-
tential vorticity and streamfunction, data from the NCEP
reanalysis is used. An effective squared wavenumber
can be calculated by performing a linear regression of
each spherical harmonic component of the isentropic
potential vorticity against the same component of the
streamfunction. We may eliminate the dependence on
the zonal wavenumber (m) by taking the average along
constant total wavenumber (n).

Figure 1 presents the barotropic squared wavenum-
ber (n(n+ 1)), the one dimensional empirical squared
wavenumber (i.e. depending only on n), and its quadratic
fit. Notice the lower (higher) values of the empirical
squared wavenumber with respect to the barotropic one
for n smaller (larger) than about 9.

Figure 1: Barotropic and effective squared wavenumber
as a function of only the total wavenumber (n), for the
winter (DJF) of the NCEP climatological year on the
345 K isentropic level.



3. QG PV inversion in the tropospheric interior

The basic equation of the quasi-geostrophic (QG)
framework using geometric height is given in White
(1977) as the conservation of perturbation potential
vorticity:

q = ∇ 2ψ +
f2

ρ0

∂

∂z

(
ρ0

N2

∂ψ

∂z

)
, (1)

where ψ[m2 s−1] is the perturbation streamfunction,
f [s−1] is the constant Coriolis parameter, ρ0[kg m−3]
is the standard atmosphere’s density which is only a
function of height z, and N [s−1] is the Brunt-Väisälä
frequency. A variety of boundary conditions for ψ may
be used to solve the PV equation (1). The one we
choose for the present section assumes that the stream-
function is bounded at the upper boundary and that
there is no perturbation potential temperature at the
lower one.

The hydrostatic relation may be written in terms of
the potential temperature and streamfunction as:

g
Θ′

Θ0
= f

(
∂ψ

∂z
− ψ

HΘ

)
, (2)

where g is the gravity (9.81 m s−2); Θ = Θ0 + Θ′ is
the potential temperature separated in a basic state
that only depends on height: Θ0(z) = Θ00e

z/HΘ , and
the perturbation potential temperature Θ′; H−1

Θ =
d log Θ0/dz is the scale height of the potential tem-
perature, and Θ00 = Θ0(z = 0).

We use the Earth’s radius (a) and the inverse of the
Earth’s rotation (Ω−1) as our length and time units,
respectively. We also define the density scale height
as: H−1

ρ = d log ρ0/dz or ρ0(z) = ρ00e
−z/Hρ , where

ρ00 = ρ0(z = 0). Furthermore, we focus on the case of
zero perturbation potential temperature at the ground
(Θ′ = 0), since we try to investigate the simplest pos-
sible dynamical situation. Thus, equations (1) and (2)
become the set of equations that we solve:

q = ∇ 2ψ + (f/N)2
(
∂2ψ

∂z2
− 1
Hρ

∂ψ

∂z

)
(3)

∂ψ

∂z
− 1
HΘ

ψ = 0 at z = 0 (4)

Our objective is to find a streamfunction solution by
solving the PV equation (3) under the boundary con-
ditions of (4), given a distribution of PV that is a delta
function in the vertical and a sinusoidal in the horizon-
tal. In other words we have: q(x, z) = δ(z − ξ)eikx,
where ξ is the level at which the delta function is
non-zero and k is a non-dimensional wavenumber, and
we look for a streamfunction of the form: ψ(x, z) =

y(z)eikx. Replacing into equations (3) and (4) we ob-
tain an ordinary differential equation:

δ(z − ξ) = −k2y(z) + (f/N)2 (yzz − (1/Hρ)yz)⇒

y′′ −H−1
ρ y′ − (fk/N)2 y = δ (5)

and its boundary condition:

y′ −H−1
Θ y = 0 at z = 0 (6)

Note that primes denote differentiation with respect to
z, the only variable on which y depends. The solu-
tion of equations (5) and (6) may achieved by solving
the homogeneous problem and then combining them
to find the Green’s function:

g(z, ξ) =

{(
eλ2z − αeλ1z

)
eλ2ξ

α(λ1−λ2)e(λ1+λ2)ξ z > ξ

eλ2z eλ2ξ−αeλ1ξ

α(λ1−λ2)e(λ1+λ2)ξ z ≤ ξ

(7)
where

λ1,2 = H−1
ρ

(
1±

√
1 + 4 (NHρ/f)2 k2

)
(8)

are the roots of the characteristic polynomial of the
homogeneous version of equation (5), and

α =
λ2 −H−1

Θ

λ1 −H−1
Θ

. (9)

Figure 2 presents the streamfunction response to
unit PV concentration on different levels (ξ = 7, 8, 9 km).
The parameters have been chosen as follows: N =
1.2× 10−3 s−1, f = 1.2× 10−4 s−1, corresponding to
a latitude of φ ∼ 55 ◦, HΘ = 600 km and Hρ = 10 km.

Our interest focuses at the level of application of
the delta PV function, z = ξ. At that level, the two
branches of the Green’s function in (7) are equal and
become:

g(ξ, ξ) =
e2λ2ξ − αe(λ1+λ2)ξ

α (λ1 − λ2) e(λ1+λ2)ξ
(10)

In an attempt to simplify the previous equation we
define the following quantities: L = NHρ/f , γ =√

1 + 4L2k2, σ = Hρ/α, where L is the usual Rossby
radius of deformation. With these definitions, we have
the following relations:

λ1,2 = H−1
ρ (1± γ),

λ1 + λ2 = H−1
ρ ,

λ1 − λ2 = H−1
ρ γ.

After some manipulation, and denoting the Green’s
function amplitude of the streamfunction response g(z =
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Figure 2: Streamfunction response to PV concentra-
tion on different levels. The horizontal wavenumber of
the streamfunction is k = 12.

ξ, ξ) as ψk so that the dependence on the wavenumber
is explicitly shown, we have the simplified relation:

ψk = −Hρ − σe−γξ/Hρ

γ
. (11)

This equation provides an effective squared wavenum-
ber that relates a unit PV concentration to stream-
function response. The wavenumber dependence is
implicit in the definition of both σ and γ. Figure 3
presents two effective squared wavenumbers computed
using (11) at different levels (ξ = 7, 8, 9 km ) as well
as the barotropic squared wavenumber (n(n+ 1)) and
the empirical one presented in Figure 1.

In the present QG model of the interior troposphere
we limit our tunable parameters to four. Namely, the
planetary vorticity f , the Brunt-Väisälä frequency N ,
and the scale heights for density and potential temper-
ature Hρ and HΘ, respectively.

4. Tropopause QG PV inversion

Instead of considering the interior of the tropo-
sphere as in Section 3., we may investigate a more
complex situation where the perturbation potential vor-
ticity is zero in the troposphere and stratosphere, but
presents a delta function at the tropopause. The strato-
sphere is distinct from the tropopause due to two dif-
ferent values of the static stability parameter Ns/t,
where the subscript denotes either the stratospheric or
the tropospheric value. For simplicity, in this section
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Figure 3: Squared wavenumbers computed with var-
ious methods: (a) empirical using NCEP winter cli-
matology, thick line, (b) barotropic, dot-dashed line,
(c) interior QG PV inversion at ξ = 7, 8, 9 km shown
as oval blue line, square red line and diamond green
line, respectively. The parameters used to compute
the squared wavenumbers are also displayed; see text
for details.

we assume the Boussinesq approximation of constant
density. We follow the formalism of Juckes (1994) in
most of this section. The boundary conditions are that
the streamfunction should be continuous across the
tropopause and finite (0 with no loss of generality) at
±∞. We place the tropopause at z = 0 with negative
(positive) height denoting positions in the troposphere
(stratosphere).

Following the same technique as in the previous
section, the vertical component of the streamfunction
may be given as:

ψ(z) =

{
ψke

−(kNs/f)z z > 0
ψke

+(kNt/f)z z < 0
(12)

We assume that at the tropopause there is a per-
turbation potential temperature Θtp, that corresponds
to a potential vorticity distribution (Bretherton, 1966)
given by:

qtp = −N
2
s −N2

t

N2
sN

2
t

fg
Θtp

Θ00
δ(z), (13)

where δ(z) is the delta function at ξ = 0. Applying
the boundary conditions to (12) we find:

ψk = g
Θtp

k

Θ00

Ns −Nt

NsNt

1
k
,



and using the equation (13) we finally have:

qk =
(
−f Ns +Nt

NsNt
k

)
ψk (14)

We have explicitly kept the k dependence on our vari-
ables in view of our objective of finding a relation be-
tween PV and streamfunction for a particular Fourier
component.

In Figure 4 we present the squared wavenumber
computed with equation (14). For comparison we in-
clude the squared barotropic and empirical wavenum-
bers as well as the one computed with the interior QG
PV inversion equation (11). Notice that the linear re-
lationship this equation provides cannot capture the
quadratic nature of the empirical squared wavenumber
for the whole range of total wavenumbers n. Never-
theless, it seems to fit the empirical relationship ade-
quately in the low wavenumber range.
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Figure 4: Squared wavenumbers computed with var-
ious methods: (a) empirical using NCEP winter cli-
matology, thick line, (b) barotropic, dot-dashed line,
(c) interior QG PV inversion at ξ = 8km, circle blue
line (d) tropopause QG PV inversion, square green
line. The parameters used to compute the squared
wavenumbers are also displayed; see text for details.

5. Conclusions

The QG models of both the tropospheric interior
and tropopause may be used to largely retrieve an em-
pirical q − ψ spectral relationship that has been com-
puted using NCEP reanalysis data. This relationship
is different from the barotropic one because of a lin-
ear term and a non-zero intercept. Both QG relations

have a non-zero intercept, while the tropopause QG
relation is linear, thus providing an insight to the lin-
ear and constant portion of the empirical relationship
(a+ bn+ cn2, see Figure 1 for the plot and values of
a, b, and c).

This provides a conceptual framework in which to
incorporate our empirical q−ψ spectral relationship. In
other words, we may consider some quasi-geostrophic
relation between streamfunction and potential vorticity
as a proxy of our empirical barotropic model. That
gives us significant theoretical background and deeper
understanding of the empirical model.

Since the analysis leading to the empirical squared
wavenumber is neither on the tropopause nor on a con-
stant height surface, we expect to achieve only ade-
quate rather than identical correspondence to the the-
oretical result.
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