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1.   INTRODUCTION

We have developed a new Lagrangian dynamic sea
ice model for regional forecasting, process studies, data
assimilation, and global climate forecasting. The model
can be used to estimate the ice movement, deformation,
thickness, and surface heat fluxes over the entire Arctic
basin. A Lagrangian model can work alone or comple-
ment an Eulerian model. Advantages of a Lagrangian
model include:
• Data assimilation procedures for ice trajectories

determined from buoys or satellite tracking are
accommodated more naturally and in the process
provide a unique and valuable method of model eval-
uation

• Sea ice retains its identity as a material element for
long periods of time and a model that recognizes this
fact may have a better chance of realistically model-
ing ice behavior

• Cells can be added and dropped as needed, unlike
an Eulerian model in which all cells must be retained
regardless of the ice extent

• Slip lines in the ice motion are accommodated more
naturally because there is no internal grid coordinate
system to skew the results

• Ice from source regions, such as a particular shelf,
can be marked and traced in a more accurate man-
ner, even with a low-resolution model

• A Lagrangian model can change the spatial resolu-
tion as the geophysical situation requires. It can be
low where there is little spatial variability and high
where the spatial variability is large, such as at the
ice edge, near shore-fast ice, or in regions of strong
shear. A nested-grid Eulerian model may have less
flexibility.

1.1.  A review of Lagrangian models

The model presented here follows closely on the
work of others. Flato (1993) describes a Lagrangian ice
model that uses the particle-in-cell (PIC) method. This
method solves the momentum equation on a relatively
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coarse, fixed, Eulerian grid. The velocity is then interpo-
lated to a set of Lagrangian particles that are advected
individually through the model domain. A trio of studies
by Gutfraind and Savage (1997a, b, 1998) more closely
resembles what we have done. They apply a numerical
technique, which was first widely used in the astrophys-
ics community, called Smoothed Particle Hydrodynamics
(SPH) (Monaghan, 1988, 1992). No underlying Eulerian
grid is used to determine the momentum balance. In this
technique, the momentum equation is solved for individ-
ual point-mass particles. The strain rate, needed to
determine the internal stress in the ice, is determined at
particle positions by summing over the properties of
neighboring particles. A third related approach is that of
Pritchard et al. (1990). They define an adaptive grid for
the Bering Sea that deforms such that the final line of
grid cells stays with the ice edge in a semi-Lagrangian
manner. The grid is not entirely Lagrangian in that the
grid velocity is not matched to the ice velocity at all loca-
tions and some grid points remain fixed. Finally, Hopkins
(1996) devised a dynamic model of sea ice consisting of
convex polygons (floes) of multiyear ice with polygons of
first-year ice in between. Driven by an imposed strain
field, the model calculates the forces on each parcel of
ice and moves them accordingly.

1.2.  Smoothed Particle Hydrodynamics

The momentum equation for sea ice includes an
internal stress-gradient term that is derived from the spa-
tial gradients of the ice velocity, the strain rates. In an
Eulerian model the strain rates are easily determined by
centered differencing of adjacent cell velocities. With the
Lagrangian model the cell locations change constantly
and are distributed irregularly. We solve this problem
through the formalism of Smoothed Particle Hydrody-
namics (SPH). SPH has been used widely to solve the
momentum equation in a variety of modeling problems.
It was first developed to solve astrophysical problems
(Lucy, 1977; Gingold and Monaghan, 1977) and has now
been applied (references in Monaghan, 1992) to gas
dynamics, stellar collisions, impacts, cloud collisions,
disks and rings, jets, motion near black holes, super
novae, and special and general relativity. It has also
been used for cohesive granular flow (Oger and Savage,
1999), and for sea ice (Gutfraind and Savage, 1997a, b,
1



1998). Our development of the SPH formalism follows
that of Gutfraind and Savage who used it to determine
the motion of sea ice at a crooked coastline, a marginal
ice zone, and through a constricted passage. Here we
apply it to the entire Arctic Basin.

SPH determines the local average of a smooth field
quantity f(r) as a weighted summation of the property at
the locations of neighboring particles. The weighted
sum is derived from an area integral with a kernel func-
tion W (Monaghan, 1988)

(1)

so that the value at the location r i is approximated as

, (2)

where ak is the area of particle k, and |r i–rk| is the dis-
tance to the kth particle. The kernel W is a radially
symmetric function with unit area

, (3)

where L is a smoothing length. One of the most accu-
rate kernels is the Gaussian (Monaghan, 1992), and
this is the kernel used in the present model, but others
can be used to good advantage. For any W, the limit
for small L must be δ, the Dirac delta function.

The key aspect of SPH is that the gradients of any
field, such as the ice velocity, are also expressed as a
summation, not with the weighting function W but with its
first derivative (Monaghan, 1988),

, (4)

where represents the gradient with respect to the
coordinates of particle i. Equation (4) is the heart of
SPH; the spatial derivatives of the velocity (the strain
rates) are computed as weighted sums over neighbor-
ing cells. For example, the SPH formulation of one
element of the strain rate tensor for particle i is (Gut-
fraind and Savage, 1997a)

, (5)

where is the derivative with respect to the coordi-

nates of particle i. The following section describes our
implementation of Smoothed Particle Hydrodyamics.

2.   THE LAGRANGIAN ICE MODEL

The model is based on a set of Lagrangian cells.
The cells are considered as individual regions of ice in
the dynamic model, and each cell has an associated
position (x,y), velocity (u,v), ice compactness A, and
mean ice thickness h. The area of the cells is computed
each time step from a Voronoi tessellation of the entire
basin. The Voronoi polygon of a point contains the
region closer to that point than to any other point. The
parameters describing the cells are assumed to vary
smoothly in space. The cells are initially given positions
in a square grid. Cells may be removed if they lose all
their ice, or merged with a neighbor (averaging the posi-
tions, velocities, thickness, and compactness) if they
move too close together. Cells may also be created
when ice forms in a formerly ice-free region, either as a
result of off-shore flow or from freezing in the fall.

This first implementation of the model, focused on
ice dynamics, has just two ice classes, open water and
ice, following Hibler (1979), and uses a seasonally
dependent ice-growth rate determined from the
ice-growth table of Thorndike et al. (1975). Future ver-
sions will have a full thickness distribution and ice growth
and melt rates determined from a multilayer thermody-
namic model solved on a low-resolution Eulerian grid.
Table 1 lists various model parameters and their values
for our standard runs.

Coastal cells. The coastal boundary condition is
established by assuming the coast consists of fixed cells
with very thick ice. The coastal cells have a spacing of
25 km and have an assumed area of 2500 km2 and an
assumed ice thickness of 10 m. The idea is that these
stationary cells will impose local strain-rate estimates via
the SPH procedure that will create the necessary con-
vergence and shear to approximate the internal ice
stress in the coastal regions. The coastal cells are used
in the strain-rate determinations and in interpolating ice
thickness values for internal stress estimates.

Stress gradients. The velocity gradients (strain
rates) can be found for any location using the SPH gradi-
ent formalism (including the points with zero velocity for
the coast). However the ice stress is not defined for
these coastal points so the stress gradient is not defined
for cells near the coast. This problem is overcome by
determining the strain rates and stress at four points
near each cell, 1/4 of the initial cell spacing in the posi-
tive and negative x and y directions. The ice thickness
and concentration are interpolated to the four locations
as well. Any of the four points near a coast will have
both an increased ice thickness and a strain rate reflect-
ing the presence of the coast. The stress is determined
from the strain rate at each of the four points following a
viscous plastic constitutive law. The normal and tangen-

f r( )〈 〉 f r '( )W r r ' L,–( ) r 'd∫=
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tial forces on the cell due to internal ice stress are then
determined from the gradient in the stress tensor by sim-
ple finite differences of the stress values at the four
points.

Nearest neighbors. In principle the summations in
(4) and (5) should include all of the cells in the model,
because the integral in (1) covers the entire area. In
practice, the cells more than one or two length scales
away from the point of interest have little impact because
of the Gaussian decay of the weighting function. In
order to improve the numerical efficiency, the summation
was performed only on the nearest neighbors of a cell.
Experiments showed that as few as Nneibs = 20 were
needed to produce good results. The nearest neighbors
for each cell were determined once a day.

Time stepping. The momentum equations are inte-
grated in time using the fifth-order Runge-Kutta-Fehlberg
method with an adaptive time step, as in the Fortran
code RKF45 (Fehlberg, 1969). It adjusts the integration
step size dynamically to achieve the required level of
accuracy. The variables in the integration are the two
components of the positions of all the ice cells and the
two components of their velocities, [x, y, u, v]. For these
simulations the tolerance in the positions was set at 25
m and in the velocity at 0.0001 m/s. The model uses a
full step size of 0.5 day. This full time step is divided
dynamically into 100 to 2000 small steps for integrating
the position and velocity. The area, ice concentration,
and mean ice thickness are also determined each small
time step from the computed divergence. Typical step
sizes are 100 to 1000 seconds and each small step
requires six evaluations of the time derivatives d [x, y, u,
v] / dt.

Velocity smoothing. In order to maintain numerical
stability in the model near the boundaries we found it
necessary to apply an SPH smooth to the velocity once
each full time step. A smoothing length of 100 km was
used. Because the smoothing includes the stationary
coastal points, the speed of the cells near the coast is
reduced in the process. The thickness and compact-
ness are also smoothed to insure smooth fields, however
the coastal points are not included for these variables.

Changes in the thickness and the compactness are
computed following the procedures outlined in Hibler
(1979). These equations are based on the divergence
computed from the SPH-determined strain rates and on
the ice growth rates for open water and for the thick ice.
The ice growth table of Thorndike et al. (1975) provides
the seasonal and thickness-dependent growth rates.

Forcings. The geostrophic wind is derived from the
International Arctic Buoy Program (IABP) pressure
fields. The monthly mean ocean currents are obtained

from the output of an Eulerian fully coupled ice/ocean
model (Zhang and Rothrock, 2000) with a grid cell size
of 40 km. The currents are the climatological mean for
the period 1979 to 1993. The winds and currents are lin-
early interpolated to cell locations. The initial mean ice
thickness was taken from the mean ice thickness of the
Eulerian model for the January of the initial year of a sim-
ulation.

3.   MODEL RESULTS

Two samples of the model output are shown in Fig-
ures 1 and 2. Figure 1 shows the trajectories of all of the
cells over a 10-day period with the color of the trajecto-
ries coded for the ice thickness. Strong variations in the
shapes of the trajectories are seen from one region to
another, yet locally the trajectories show a great deal of
coherence, reflecting the imposed smoothness of the
velocity field. The ice is almost stopped north of Green-
land as a result of the internal ice stress in the thick ice
found in this region. The ice is thickest near the Cana-
dian archipelago, reflecting the initial ice thickness field.
The model trajectories show moderately good corre-
spondence with the buoy trajectories. In Fig. 2 the tra-
jectories are shown for a 30-day period and the mean
model ice velocity is interpolated to a regular grid.

Validation and sensitivity tests. A series of sensi-
tivity tests were run to determine the best value to use
for some of the model parameters with the buoy veloci-
ties providing the validation data. The test period was
the year 1998, with the initial conditions provided by a
one-year integration through 1997. Comparisons were
made of the daily buoy velocity with the daily averaged
model velocity interpolated to the buoy positions using
the SPH interpolation procedure with a length scale of
100 km.

The mean speeds, the RMS vector difference in the
velocities, the turning angles, and the vector correlations
of the velocities were determined. The RMS difference
is found from the magnitudes of the vector differences
between the model and the buoy. In order to account for
spatial and temporal variability in the regression coeffi-
cients, we have followed Thomas (1999) and binned the
observations into a 160-km grid and one-month inter-
vals. Velocities from grid squares and months with 10 or
more buoy observations are used to determine a
squared correlation coefficient. The median values of R2

for all such fits are reported for each run of the sensitivity
studies.

The parameters examined fall into two groups. One
group consists of model numerical parameters (Table 2)
and includes the length scale for the SPH strain-rate cal-
culations, the number of neighbors included in the SPH
calculations, the velocity tolerance, and the smoothing
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length scale. The second group consists of physical
parameters (Table 3) and includes the air drag coeffi-
cient, the air stress turning angle, the ice strength, and
the yield ellipse aspect ratio.

Numerical parameters. The numerical-parameters
sensitivity tests show that the simulations are not very
sensitive to the values of the parameters. RMS differ-
ences range only between 0.061 and 0.064 m s–1 and
the squared correlation coefficient range only from 0.626
to 0.638. The speed bias and the turning angle bias also
do not change significantly. A larger length scale
improves the correlation slightly but can smooth the
velocity field excessively if it is too large. The
model-buoy comparison is also surprisingly insensitive
to the number of nearest neighbors used to determine
the strain rates or to the velocity tolerance used to guide
the adaptive time stepping. The time stepping is largely
controlled by cells where the accelerations are large and
these cells are typically located very near the coasts,
where few buoys are deployed. More accurate solutions
near the coasts (obtained with reduced error tolerances
in the adaptive time stepping) are not reflected in
improved performance statistics measured at the buoys,
which are found mostly in the interior. The velocity
smoothing scale also does not help the performance sta-
tistics. However if no smoothing is used, time series
plots of the velocity of individual cells occasionally indi-
cate unrealistic oscillatory behavior. The SPH interpola-
tion procedure for estimating the model velocity at the
locations of the buoys effectively smooths these oscilla-
tions among adjacent cells and the interpolated model
velocity matches the buoy velocities quite well. However
to avoid these oscillatory instabilities we think it best to
include a small amount of smoothing of the velocity fields
so as to insure that the assumption of a smoothly vary-
ing velocity field is accurate.

Physical parameters. The sensitivity tests for the
physical parameters show that the magnitude of the
speed bias is most sensitive to the air drag coefficient
and is at a minimum (2.4%) for CA = 0.0012. The angle
bias is most sensitive, of course, to α, the turning angle
for the wind stress. Because of the free parameters in
the linear model used to compute the correlation, the
correlation is insensitive to changes in either of these
two parameters. The ice strength P* and the aspect
ratio of the yield ellipse have a limited impact on the
velocity comparisons over the ranges tested. However
the speed bias is reduced as the ice strength is
increased. Perhaps most surprising in these tests is the
insensitivity of the model simulations to changes in the
key parameters. The model speed bias and turning
angle bias respond as expected, but the RMS differ-

ences and the correlations do not change greatly within
the testing range of the parameters.

The RMS differences and the correlation values for
the Lagrangian model are comparable to those obtained
with a state-of-the-art Eulerian ice-ocean model. Zhang
et al. (2003) found the RMS differences between the ice
velocity and the buoy velocities to be 0.070 m s–1 in both
winter and summer over a five-year period and the corre-
lation coefficients to be R = 0.66 in winter and R = 0.74
in summer. Our values for a one-year comparison show
RMS differences to be 0.062 m s–1 for the standard case
and the correlation coefficient for the year to be R =0.79.

4.   SUMMARY AND CONCLUSIONS

The Lagrangian model presented here offers a new
way to think about ice dynamics and ice processes.
Instead of dividing the world into squares and attempting
to keep track of the net flux of ice or momentum into and
out of the squares (the classic Eulerian model), we
attempt to follow the evolution of particular parcels of ice
and model explicitly the forces that impinge on the parcel
and the resulting parcel velocities and trajectories. This
is a different approach and has required some innova-
tion. In constructing an entirely new model we have
become more aware than ever of the creative efforts
needed to meld the physical laws of nature with a model
framework that is logically and numerically tractable. By
necessity, compromises were made, and those pre-
sented here are undoubtedly not the last word on the for-
mulation of a Lagrangian dynamic sea ice model.

The most important attribute of the model is that it
represents the ice pack with a set of mobile ice cells,
each of which is characterized by position, velocity,
mean thickness, and compactness. The velocity, thick-
ness, and compactness are thought to vary smoothly in
space. The equations of motion that are solved for each
cell include terms for the water and air stresses, the
Coriolis force, and internal ice stress gradients. The ice
stress gradients are found from a viscous plastic rheol-
ogy with an elliptic yield curve. The strain rates are
found from a weighted sum of the velocities of 20 neigh-
boring cells using the formalism of Smoothed Particle
Hydrodynamics. Ice growth and melt rates are deter-
mined from a lookup table that depends on season and
thickness.

The ice motion in the Arctic Ocean is well correlated
with the geostrophic wind speed (Thorndike and Colony,
1982; Thomas, 1999). Thomas (1999) found that the
median vector correlation of the geostrophic wind with
the ice motion (as measured by buoys) is R2 = 0.71 in
the winter and 0.73 in the summer and fall. His analysis
was for the 15-year period from 1979 through 1993 and
he had removed the spatial and seasonal variability of
4



the linear relation by binning the data into 160-km
squares for each month of the year. He also found that
the RMS error of eight different formulations of a stan-
dard Eulerian model was larger than that found from the
linear least-squares model. He found that for the Arctic
Ocean the buoy mean field had an error of 0.085 m s–1

(the standard deviation), the linear model an error of
0.052 m s–1, and the Eulerian model errors ranged from
0.061 to 0.089 m s–1.

We compared the buoy, wind, and model velocities
with separate fits for each 160-km square grid cell and
for each month. The median values of R2 and the errors
in the fit were examined. The geostrophic wind for the
five-year simulation is slightly better correlated (R2 =
0.70) with the buoy velocities than the model is (R2 =
0.68). The model velocities are more correlated with the
geostrophic wind (R2 = 0.88) than the buoys’ are, in part
because any error in the wind field is also reflected in the
model response. The RMS difference between the
model velocity and the buoy velocity is 0.065 m s–1,
much more than that of the linear model, 0.042 m s–1.
The fact that the model ice velocity error is larger than
that of the best-fit least-squares model is not too surpris-
ing, because the best-fit model has the luxury of choos-
ing a different set of coefficients for every location and
month, coefficients that minimize the error by design.

The model performs stably with the adaptive time
stepping procedure, which changes the size of the inte-
gration step size in order to keep the integration error
below a set tolerance. This procedure allows the model
to take as few as 200 or as many as 5000 steps in a
half-day period. The model errors are not very sensitive
to large changes in both numerical and physical model
parameters.

Future work. This is a new ice dynamics model that
can be refined before it is widely applied. The coastal
boundary force could be modified to better allow for the
possibility of fast ice. This would entail the formulation of
a coastal force that allows for tensile strength. The num-
ber density could vary spatially by defining regions
where the initial cell separation is smaller than found in
the bulk of the basin, places of special interest such as in
constricted regions, in shelf regions, or in marginal ice
zones. The length scale is currently constant but it could
be made to vary depending on the number density of the
cells so that better spatial resolution of the velocity field
could be obtained in regions with a high density of cells.

The thermodynamic growth and melt rates could be
modeled using air temperature, wind speed, and short-
and longwave radiative flux fields. The focus of this first
study is on the Lagrangian dynamic model, so the ther-
modynamics have been subsumed into a simple season-
and thickness-dependent ice-growth table. Along with

the thermodynamics, a more physically realistic ridging
and redistribution model could be included. The
pack-ice model of Lindsay (2003) includes both a ther-
modynamic and an ice redistribution model and is
designed to be used in a Lagrangian context.

Data assimilation. Finally, one of the prime motiva-
tions for designing this model has been to assimilate
integral Lagrangian measures of the ice motion, such as
from buoys or from the Radarsat Geophysical Processor
System (RGPS) (Kwok, 1998). The RGPS provides
measures of the ice motion for a large number of points
with temporal intervals of 1 to 10 days. The cells of our
Lagrangian model could be associated with particular
RGPS trajectories. The model would provide the veloc-
ity estimates for intermediate times between the RGPS
observations so that the velocity and deformation fields
measured by the RGPS might be translated into regu-
larly gridded fields, more easily used for Eulerian model
validation or assimilation. Other potential applications of
a model such as this are for long-range trajectory analy-
sis (such as of ice production regions or for
entrained-minerals tracing experiments), ice mixing (hor-
izontal diffusion) studies, stress propagation analysis,
ice rheology studies, or marginal ice zone prediction.

Animations of the model results may be found at the
web site psc.apl.washington.edu/lindsay. An extended
version of this paper has been submitted to the Journal
of Physical Oceanography (Lindsay and Stern, 2003)
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Table 1. Model Parameters, Standard Case

Parameter Symbol Value

Initial cell spacing ∆x 100 km

Coastal points spacing ∆xcoast 25 km

Number of Neighbors Nneibs 20

SPH length scale L 150 km

Smoothing scale Lsmth 100 km

Geostrophic wind drag coefficient Cg 0.0012

Current drag coefficient Cw 0.055

Wind stress turning angle α 30°

Water stress turning angle β 25°

New ice thickness h0 0.1 m

Coastal force length scale Lcoast 25 km

Coastal force strength Fcoast 0.1 N m-2

Ice strength constant P* 5000 N m-2

Yield ellipse aspect ratio e 2

Full time step ∆t 0.5 day

Position tolerance ex 25 m

Velocity tolerance eu 0.0001 m s-1
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Table 2. Sensitivity studies of model velocities compared to buoy velocities, numerical parameters

Table 3.     Sensitivity studies of model velocities compared to buoy velocities, physical parameters

Parameter Standard
value

Adjusted
values

Mean speed
bias

(fraction of
mean)

Mean angle
bias (deg)

RMS
difference

(m s-1)

R2

Std. Case 0.021 2.9 0.062 0.637

L  (km) 150 100 0.042 2.6 0.061 0.628

300 0.051 3.0 0.063 0.632

Nneibs 20 10 0.046 2.1 0.064 0.631

30 0.038 2.7 0.063 0.632

eu (m s–1) 0.0001 0.001 0.021 1.9 0.064 0.629

0.0005 0.023 2.7 0.064 0.636

Lsmth (km) 100 none 0.046 4.9 0.064 0.626

200 0.005 3.0 0.062 0.636

Parameter Standard
value

Adjusted
values

Mean speed
bias

(fraction of
mean)

Mean angle
bias (deg)

RMS
difference

(m s-1)

R2

Std. Case 0.021 2.9 0.062 0.637

Cg 0.0012 0.0011 -0.036 3.0 0.062 0.640

0.0013 0.079 3.5 0.064 0.633

α 30 20 0.026 -7.0 0.063 0.637

40 0.039 14.3 0.066 0.630

P* 5000 2500 0.046 1.6 0.062 0.632

10000 -0.094 6.2 0.061 0.607

e 2 1 -0.013 3.6 0.061 0.615

4 0.034 2.0 0.062 0.638
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Fig. 1. Ten-day trajectories of all cells in the Arctic Basin from March 1997. The simulated thickness is color coded.
A black dot marks the end of each trajectory.
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Fig. 2. Thirty-day model trajectories from June 1998. The mean thirty-day velocity field from the model, interpolated
to a regular grid, is shown with red vectors.

0.1 m/sRussia

Alaska

Greenland
10


	1. Introduction
	1.1. A review of Lagrangian models
	1.2. Smoothed Particle Hydrodynamics

	2. The Lagrangian ice model
	3. Model results
	4. Summary and conclusions
	Acknowledgements
	References
	Table 1. Model Parameters, Standard Case
	Table 2. Sensitivity studies of model velocities compared to buoy velocities, numerical parameters
	Table 3. Sensitivity studies of model velocities compared to buoy velocities, physical parameters
	Fig. 1. Ten-day trajectories of all cells in the Arctic Basin from March 1997. The simulated thic...
	Fig. 2. Thirty-day model trajectories from June 1998. The mean thirty-day velocity field from the...

