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1. INTRODUCTION

In this paper, parameterization schemes for the drag
due to internal gravity waves in the stratosphere are
discussed and compared in the context of a simple
one-dimensional model of the quasi-biennial oscilla-
tion (QBO).

The QBO is an oscillation in zonal wind direction
observed in the equatorial stratosphere; it is charac-
terized by alternating easterly and westerly phases
that descend with time. The latitudinal profile of the
oscillation amplitude is approximately Gaussian with
a half-width of about 14

�
, the average maximum am-

plitude is 23 m s
���

at the equator, and the period of
the oscillation is 26–30 months.

In the past few decades, a number of theories have
been developed to explain the QBO (e.g., Lindzen
and Holton, 1968; Holton and Lindzen, 1972; Plumb,
1977). It is well-known that it is driven by the depo-
sition of momentum by waves propagating upwards
from the troposphere. However, there has been con-
siderable debate as to the relative contributions of
the different types of waves involved: planetary-scale
Kelvin and mixed Rossby-gravity waves, and small-
scale gravity waves. It is now understood that grav-
ity waves play an important rôle in driving the QBO.
It was noted by Dunkerton (1997) that the presence
of the Brewer-Dobson upwelling in the lower strato-
sphere acts to suppress the descent of the QBO
shear zones. Thus, the drag from equatorial plan-
etary waves alone is insufficient to generate a QBO
and the additional drag needed must come from grav-
ity waves. However, gravity waves, because of their
small scale, are generally unresolved in large-scale
general circulation models (GCMs) of the atmosphere
and the drag from these waves must be accounted for
by means of parameterizations.

Until recently, GCMs had been unable to simulate
QBOs; this was seen as a notable failing of the mod-
els. In the past few years, GCMs that include param-
eterized gravity wave drag have had some success
in generating QBOs. This suggests that Dunkerton
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(1997) is correct in stating that gravity wave drag is
needed to drive a QBO in the earth’s atmosphere,
given the strength of the equatorial planetary waves.
Unfortunately, there is a lack of quantitative informa-
tion from observations to infer constraints on gravity
wave parameters for use in models.

It must be emphasized also that GCMs that do sim-
ulate QBOs seem to do so for various reasons and it
is possible that a QBO can be obtained for the wrong
reasons by simply tuning the model input parameters.
In general, the characteristics of the QBOs generated
by GCMs and the requirements to obtain these oscil-
lations are different for each model. This is not sur-
prising, given the fact that the form of the simulated
QBO depends on a number of factors, many of which
are themselves model-dependent.

All these considerations suggest that there is a
need for an understanding of the properties of gravity-
wave-drag parameterization schemes in the context
of a simulated QBO. We have taken a step towards
this by adding parameterized wave drag to a simple
one-dimensional zonal-mean model of the QBO. The
gravity-wave-drag parameterization schemes used
in our study are well-known schemes which are
based on the theory of wave breaking and satura-
tion (Lindzen, 1981). Drag due to equatorial planetary
waves is also added to the model; this is also repre-
sented by means of a parameterization (Holton and
Lindzen, 1972, hereafter referred to as HL72). The
QBOs obtained from the two types of waves are com-
pared in Campbell and Shepherd (2003a) and the ef-
fect of combining drag from both types of waves is
examined in Campbell and Shepherd (2003b). An
overview of our conclusions is presented here.

The one-dimensional model comprises the single
equation �����
	���


��������� ������� ����	����
(1)

where
�� � ����	��

is the zonally-averaged zonal veloc-
ity and the term ��� ��� 	��

represents the forcing due
to equatorial planetary waves and/or gravity waves.
The parameter



is the vertical diffusion. The equa-

tion is solved numerically in a domain extending from
a height of 15 km (around the tropopause) up to a
height of 60 km. The source level of the waves is
taken to be the lower boundary.



The investigation is aimed at providing answers to
the following questions:
(1) For a given parameterization scheme, what are
the conditions on the initial configuration and the
choice of parameters for the mean wind to be able
to evolve to an oscillating state?
(2) What is the mechanism for the descent of the
shear layers?
(3) What factors affect the form and, in particular, the
period of the oscillation (assuming one is possible)?
(4) What rôle does diffusion play, in particular, in the
mechanism for switching between easterly and west-
erly winds at the lowest levels? Is it needed at higher
levels?
(5) What are the differences between the gravity-
wave-drag schemes that assume wave breaking and
the HL72 scheme for equatorial planetary waves,
which is based on the assumption of thermal damping
of the waves?

In answering these questions, we derive the con-
straints that are needed for each scheme to be able
to generate a mean-wind oscillation that resembles
the QBO in at least the following respects:
(1) Its period is within a range of about 700–900 days.
(2) Its maximum amplitude tends to a steady value
within the range of velocities 20–50m s

� �
.

(3) It takes place over a range of heights from the
source level up to a minimum height of about 50 km.
The constraints derived include restrictions on the
choice of the relevant parameters, on the initial con-
figuration and, where appropriate, on the gravity wave
source spectrum.

2. EQUATORIAL PLANETARY WAVES

A number of the issues raised in questions (1)–
(5) were addressed by Plumb (1977) for the HL72
scheme for equatorial planetary waves. Plumb’s dis-
cussion of the HL72 theory focused on the configu-
ration involving a westerly Kelvin wave and an “anti-
Kelvin” wave. The latter is an easterly wave which
does not exist in nature; it is assumed to be unaf-
fected by rotation and, thus, has the same form as a
Kelvin wave except that its phase speed and momen-
tum flux are in the opposite direction. The term “anti-
Kelvin” wave was suggested by Dunkerton (1991).
The advantage of using such a wave instead of a
mixed Rossby-gravity wave is that the two waves then
have identical expressions for their drags:

� � � � � � ����� ��� � �� �
	 � � ����
�� � ��� ���� � �� ��	 � � ��� ��� ���� �

(2)
where the source level of the waves is

� � � � and� �� are the momentum fluxes, which are specified at
the source level. The phase speeds and horizontal
wave numbers of the waves are denoted by

	 �
and

� �
respectively and, in all cases, the plus sign refers

to the westerly wave and the minus sign to the east-
erly wave. The other parameters are the Newtonian
cooling rate

�
and the Brunt-Väisälä frequency

�
.

Some important points to note about this scheme
are the following (Plumb, 1977):�

The strength of the drag and, hence, the period of
the oscillation, is determined by the magnitude of� � and by the ratio

����� � � 	 � � . This ratio also con-
trols the rate of exponential growth or decay of the
drag with height. In Figure 1(a), a time-height plot
of

�� is shown for a Kelvin–anti-Kelvin wave config-
uration in which

����� � � 	 � ���! �"�
. The drag de-

creases with height and so the QBO amplitude also
decreases with height.�
In the absence of diffusion, there is no downward
propagation of information.�
The downward motion of the shear zones depends
on the flow evolution at lower levels, which is con-
trolled by the vertical diffusion at the lowest levels.
Diffusion affects the period of the oscillation and is
necessary for the switching mechanism at the low-
est levels, but it is not needed at higher levels.�
Although

�� �$# is a steady solution, it is unstable
and a QBO will develop from any initial condition, if
the parameters allow one.�
The above conclusions still hold in the more real-
istic configuration where the anti-Kelvin wave is re-
placed by a mixed Rossby-gravity wave. In the ex-
pressions for the momentum flux and the drag due
to the mixed Rossby-gravity wave, the integrand

in (2) is multiplied by a factor of % &'�(*),+- �/.1032 �  54
,

where 6 is the latitudinal gradient of planetary vor-
ticity. This results in an asymmetry between the
easterly and westerly regimes, as seen in Figure
1(b).

3. GRAVITY WAVES
3.1 Lindzen’s parameterization
Lindzen’s theory of gravity wave breaking and satura-
tion (Lindzen, 1981; Holton, 1982) was originally de-
veloped for a single wave, but it can be extended to
the case of two or more waves. Each wave is as-
sumed to propagate upwards, its amplitude increas-
ing with height, until it gets to a level, which we shall
denote as

�87
, where it becomes statically unstable

and breaks. Using a WKB analysis, Lindzen (1981)
derived the following criterion for wave breaking:9 � ���;: %=< �� 4 �,> ��? )A@ � @CB 2D> �CE � � � 	 � �,> �F �� �G	 F H > � �  �

(3)

where
� � � 	 � is the momentum flux at the source level� � of a wave with phase speed

	
. Above its breaking

level, the wave deposits momentum in the mean flow



(a)

(b)

�

�

�
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Figure 1: Time-height plot of the zonal-mean wind in QBO
simulations using the HL72 parameterization with (a) a
Kelvin wave and an anti-Kelvin wave and (b) a Kelvin wave
and a mixed Rossby-gravity wave. The solid contours de-
note westerlies and dotted contours denote easterlies.

to an extent that it remains statically stable, i.e.,
9

does not exceed
 
. The resulting drag force is

� � � � < � �� �
	 � H� �  � � � �� @� �� �G	 ����� (4)

This is often multiplied by a so-called “intermittency
factor” usually denoted as � , which is supposed to
measure the percentage of the time that the waves
are actually being forced.

To simulate the QBO using this scheme, there must
be at least two waves, one westerly and the other
easterly. Other points to note about this scheme are
the following:�

As in the HL72 scheme, if the wave forcings are
equal and opposite (i.e.,

� � � �
	
,
	 � � � 	 	

and� � � 	 � � � � � � � 	 	 �
) then the mean wind must be

nonzero initially, otherwise the drag forces due to
the waves will cancel each other out. However, a
zero initial state may be unstable to small perturba-
tions in the wind.�
The drag, as given by (4), does not depend directly
on

� � and, in this sense, the scheme differs from
the HL72 scheme. Changing

� � , however, affects
the breaking levels (according to (3)) and, hence,
the drag profile.�
The period of the oscillation is controlled by the hor-
izontal wavenumbers

� �
of the waves (which deter-

mine the magnitude of the drag), by the intermit-

tency factor � and by the strength of the vertical dif-
fusion.�
Vertical diffusion has the effect of reducing the
mean wind in the regions of strong shear above
the breaking levels; this allows the waves to con-
tinue propagating upwards and deposit momentum
at higher levels.�
Below the lowest breaking level, there is no drag.
Since the breaking criterion is local, this means
that, without diffusion, the wind can never change
below the lowest initial breaking level. Thus, un-
like in the planetary wave case, it is not enough to
have diffusion only in a boundary layer at the source
level; diffusion is needed at all the breaking levels
in order to get a QBO.

3.2 Alexander and Dunkerton’s parameterization
The parameterization described by Alexander and
Dunkerton (1999, hereafter referred to as AD99) is a
variant of the Lindzen scheme in which each wave is
assumed to deposit all its momentum at its breaking
level. For a wave with phase speed

	
and breaking

level
�87

, the drag is set to (4) at
�"7

and to zero at all
other heights. Thus, the drag corresponding to each
phase speed is a delta function of height and the total
drag is obtained by summing up these delta functions
over the range of heights. A continuous spectrum of
waves over a range of phase speeds is needed in or-
der to have a drag profile that is a continuous function
of height.

To implement the scheme, one starts at the source
level and removes from the spectrum any waves that
would have already been reflected or broken, and
then works upwards, at each level, testing each of
the remaining waves to determine whether the wave
would break or be reflected there. Reflecting waves
are removed from the spectrum there and at all sub-
sequent levels; breaking waves deposit their momen-
tum at that level. In the present study, the effect of
reflection is neglected.

As in the Lindzen scheme, the period of the os-
cillation is controlled by

�
, � and



. The width and

shape of the source spectrum determines the range
of heights over which the oscillation takes place.
There are also constraints on the initial configuration.
To illustrate this last assertion, it is helpful to exam-
ine the special case where the momentum flux at the
source takes the form

� � � 	 � � � sgn
	 ���

a constant.
For each

	
, the breaking level

�"7 � 	 � is determined by
Lindzen’s criterion: 
 ? @�� > H EF �� � � 7 � �G	 F �  �

(5)

where 

����� < �� ? � @CB > E � � � 	 � ��� �,> H � (6)



With the above choice of
� � � 	 � , 
 is independent of

	
,

and
	

can be written as an explicit function of
�"7

:	 � � � 7 � � �� � � 7 ��� 
 ? @ � > H E � (7)

Depending on the initial strength of the shear, there
are then two possibilities. These are illustrated in Fig-
ure 2 for an initial

�� profile in the form of a westerly
jet with maximum amplitude at

� � � # km. In Case 1,�� ��� m s
� �

at its maximum (Figure 2(a)) and in Case
2, it is < # m s

���
(Figure 2(b)).

(a)

(b)

�

�

����� �
	��


������� �
���� �
� �����

Figure 2: AD99 parameterization with the momentum flux
spectrum � ��������� � sgn ���"! a constant: (a) The dot-
ted line shows the mean velocity with maximum value of#$&%('*) �,+ m s ��� . The thin solid line shows the graph of� � ��- 7 �.� #$ ��- 7 ��/1032 @ � > H E and the black circles show the
actual breaking levels of the waves. (b) The same as for (a),
but with stronger shear:

#$4%('5) ��6 � m s ��� . The profile of
breaking levels is now a discontinuous function of � . The
sign of the drag over each range of heights is shown at the
right of the plot.

Case 1. Weak shear: If the initial shear is so
weak that there is no level at which

� 	 � � ���87
changes

sign (i.e.,
	 	

is an increasing function and
	 �

is a de-
creasing function of

�87
), then, at every level, exactly

two waves contribute to the drag, a westerly wave
with phase speed

	 	
and an easterly wave with phase

speed
	 �

(Figure 2(a)). At the levels where
�� is zero,	 � � � 	 	

and so the total drag is zero, but at the
levels where

�� is nonzero,
	 �87� � 	 	

and, since
�� is

positive,
	 � � � 	 	

. For the westerly wave,�� ��	 	 � �

 ? @ > H E �

(8)

so, from (4), the drag is

� 	 � � �< �
� 
 H ? @ > E� � � 
 � ? � @ > H E ������� ���

(9)

For the easterly wave,�� �G	 � �

 ? @ > H E

(10)

and the drag is

� � � � �< �
� �


 H ? @ > E� � � 
 � ? � @ > H E ������� ���
(11)

Thus, the total drag at height
�

is

� � � � �� 
 � ? � @ > H E ������� �
(12)

In the absence of diffusion, the equation for the time-
evolution of

�� then takes the form�����
	 �:9 � ��� ������� � # � (13)

where 9 � � � � � � � �� 
 � ? � @ > H E �
(14)

The solution to (13) can be found quite readily by the
method of characteristics to be�� � � ��	�� � ��

initial
�<; ��� (15)

where ; is given by? � �>= > H E � ? � � @ > H E � < � �

 �� � 	 �

(16)

This solution describes a jet moving downwards with
no change in amplitude, as shown in Figure 3. The
speed

9 � ��� of downward propagation of the jet in-
creases exponentially with height; so the downward
propagation is faster at higher levels. Clearly, the evo-
lution of

�� shown in Figure 3 cannot lead to an oscillat-
ing state, since

�� remains non-negative everywhere.
With time,

�� goes to zero at the higher levels. Also,F ���� � ��� F
increases at the lower levels and may even-

tually become large enough that������� ��?


� � ? @ > H E

(17)

at some level. This would mean that
� 	 � � ��� � # at

that level, which is the situation in Case 2. The drag
would then become zero for some distance above that



�

�

��

Figure 3: AD99 parameterization with the momentum flux
spectrum � � ����� � � sgn ����! a constant and the initial mean
velocity profile shown in Figure 2(a): Evolution of

#$ with time
in the absence of diffusion, according to the exact solution;� � ��� 6 �*�*����� �*�*� days.

level and it would then be possible to get a QBO (see
the discussion of Case 2 below).

If the vertical diffusion term is restored to (13),
the jet still moves downward, but its amplitude de-
creases with time. With too strong diffusion,

�� could
be damped to zero too fast, thus preventing the sys-
tem from ever reaching a state where

� 	 � � ���
could

be zero somewhere. Instead, it would tend towards a
steady state with zero wind.

It is interesting to note that in Case 1, the drag pro-
file and the evolution of the mean wind are similar to
those obtained by Lindzen and Holton (1968). In their
model, there is a continuous spectrum of upward-
propagating waves (over a range of phase speeds)
and each wave is completely absorbed at its critical
level, i.e., the level where

�� � ��� � 	
. They obtained

an approximate expression for the drag due to the
wave absorption; this took the form � �

�� � ���� � ���
. As

in the AD99 weak-shear case described by (13), it is
impossible to get a spontaneous QBO-like oscillation
with such a drag profile. The shear zones propagate
downwards, but the wind cannot change direction.
Lindzen and Holton got around this by applying an os-
cillating upper boundary condition around the level of
the stratopause to mimic the semi-annual oscillation.

Case 2. Strong shear: With sufficiently strong
shear,

� 	 � � ���"7
changes sign at one or more places,

as shown in Figure 2(b). Thus, the range of levels
affected by the westerly waves does not coincide ex-
actly with the range affected by the easterly waves,
although they could overlap. There are four possible
regimes: the overlapping regions in which the total
drag is given by the expression (12), the regions af-
fected by only westerly waves and by only easterly
waves, where the drag is given by (9) and (11) re-

spectively, and the regions where the drag is zero.
These regions are indicated in Figure 2(b) by the la-
bels � � � � �

, � � �
, � � �

and � # � respectively. In the� � � � �
regions,

�� propagates downwards with speed9 � ��� , given by (14), and remains positive, as in (15).
In the � � �

and � � �
regions, expressions (9) and (11)

imply that the equation for
�� is of the form�����
	 � 9 � ���<

������� � ��� � ����� (18)

where � � ��� � � � 
 H ? @ > E< � � (19)

and the plus sign on the right-hand side of (18) ap-
plies in the � � �

region and the minus sign in the � � �
region. Thus, the jet moves downwards, but with half
the speed as in the � � � � �

regions. The nonzero term
on the right-hand side of (18) means that

�� is of the
form

�� � ����	�� � ��
initial

�<; � � � 	� � � � � 	 � ; ��� � 	 � (20)

where
�

is related to
	

and ; by an expression similar
to (16). Since the function

�
is always positive, this

means that, in the � � �
regime,

�� becomes more pos-
itive and, in the � � �

regime,
�� becomes more nega-

tive. Thus,
�� eventually becomes negative in the � � �

regime and an oscillation in
�� would then be possi-

ble. In Figure 4, the time-height contour plot of
�� is

shown from a simulation corresponding to the initial
state shown in Figure 2(b). The range of QBO heights
is from the source level up to a height of about 52 km.
This is because all the waves break below this level
(as seen in Figure 2(b)) and so there is no drag above.

�

�
(years)

Figure 4: Time-height plot of the zonal-mean wind in QBO
simulations using the AD99 parameterization with the spec-
trum � � ����� �8� sgn ����! a constant and the initial mean ve-
locity profile shown in Figure 2(b). The solid contours denote
westerlies and dotted contours denote easterlies.

As in Case 1, vertical diffusion acts to reduce
�� in

regions with large shear. With excessively strong dif-
fusion (i.e., large



),

�� could be reduced to the extent
that the situation in Case 1 would result. It would then



be impossible to obtain an oscillation between posi-
tive and negative values of

�� .
In summary, in both Cases 1 and 2, the ability of the

model to generate a QBO-like oscillation depends on
the balance between the strength of the vertical diffu-
sion and the initial strength of the shear. This is true
in general, i.e., for other

� � � 	 � profiles, even those for
which there is no explicit relationship between

	
and�87

.

4. DISCUSSION

In this paper, we have described some of the re-
quirements for simulating a QBO with a simple one-
dimensional model using parameterized wave drag.
The discussion provides some answers to the ques-
tions (1) to (5) that were posed in Section 1.

There are a number of differences between the
gravity-wave-drag schemes and the HL72 scheme for
equatorial planetary waves. It was noted in Section
2 that, in the HL72 scheme, the strength of the drag,
and hence the period of the QBO, depends directly
on the amplitude of the waves at their source. In
the gravity-wave-drag schemes, the amplitude of the
waves determines the levels at which the waves break
and thus determines the vertical profile of the drag,
but does not affect the strength of the drag directly.
The drag profile is, in general, discontinuous in height
and the levels where the discontinuities occur are de-
termined by the vertical profile of the mean wind. A
local variation in the wind at a given level can have a
profound effect on the profile of wave drag at higher
levels. In the AD99 scheme, the initial strength of the
shear (relative to other input parameters) is important
in determining whether it is possible to generate a
mean-wind oscillation at all. In the HL72 planetary
wave scheme, on the other hand, local variations in
the mean wind are not so important, since the drag at
any level is determined by the cumulative effect of the
wind over the whole range of heights below.

In all the schemes discussed here, the strength of
the vertical diffusion is an important factor that affects
the period and structure of the QBO. Increasing the
strength of the diffusion acts to shorten the period.
To generate a QBO using the HL72 scheme, verti-
cal diffusion is only needed at the lowest levels, as
Plumb (1977) pointed out. With the gravity-wave-drag
schemes that were considered here, however, it is
necessary to include vertical diffusion in the vicinity
of each of the breaking levels.

It was shown that the AD99 scheme is similar to
the original two-wave Lindzen scheme in the sense of
the drag profile being discontinuous in height (Case 2
in Section 3). However, in the particular configuration
where the mean shear is weak (Case 1), the evolution

of the wind is similar to that in the scheme described
by Lindzen and Holton (1968).

When drag from both types of waves is used in
our model, there are additional constraints on the
phase speeds of the waves (Campbell and Shepherd,
2003b). The one-dimensional model used here has a
number of obvious deficiencies, one of which is that
it does not include the effect of upwelling. The next
step in this study involves adding parameterized wave
drag to a two-dimensional balance model that sim-
ulates the seasonal cycle, including upwelling in the
tropics (Semeniuk and Shepherd, 2001). The ultimate
goal is to extend the constraints derived using these
simple one- and two-dimensional models to provide
some guidance for the use of gravity-wave-drag pa-
rameterization schemes in GCMs.
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