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Gravity wave breaking has an important influ-
ence on both the momentum and the energy budget
of the middle atmosphere. While the role of this
process is generally accepted, many details of its de-
velopment, from initial instabilities over turbulent
exchange to a final mixed state, are not clear yet.
One difficulty for theoretical studies can be the large
range of scales involved. The most prominent grav-
ity waves observed by radar or Lidar measurements
have horizontal wavelengths of a few 100 km, while
their convective instabilities are typically strongest
on scales of a few 10 m, and shear instabilities lead
to structures with horizontal scales of a few km. For
a complete representation a direct numerical simu-
lation would have to bridge a gap of several orders
of magnitude. Given the associated numerical chal-
lenge additional methods might be useful. Here an
interesting concept is the description of linear wave
packets in a slowly-varying background state by a
WKB-type approach.

By focussing on the large-scale spatial and tem-
poral dependence of local wave number and ampli-
tude it highlights the essentials of propagating linear
disturbances while keeping secondary details aside,
thereby enabling an efficient description of small-
scale features. Given a set of perturbation variables
yi, e.g. the wind (u, v, and w) and potential tem-
perature θ in the case of a Boussinesq fluid, one ex-
presses them via amplitudes and a phase, i.e.

yi(x, t) = Ai(x, t)eiφ(x,t) , (1)

defines the local wave number k = ∇φ and frequency
ω = −∂φ/∂t, and assumes that these two as well as
the amplitudes have a slow dependence in space and
time, e.g. |∇Ai| ¿ |kAi| and |∂Ai/∂t| ¿ |ωAi|. It
is then assumed (or deduced from the assumptions
above) that local frequency and wave number are
connected by a dispersion relation

ω(x, t) = Ω[(k(x, t),x, t] (2)

depending on the local properties of the time and
space dependent background state in which the small-
scale structure propagates. For purely kinematical
reasons one derives from this the eikonal equations
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governing the time-dependence of the wave number,
i.e.

(
∂

∂t
+ vg · ∇)k = −∇xΩ (3)

where vg = ∇kΩ is the local group velocity.
More difficult is it to obtain an equation for the

amplitudes. A first step is to assume that their ratios
are given by linear normal mode theory. Then it
suffices to determine one unique wave amplitude. In
many cases there exits a conserved wave action A
satisfying

∂A
∂t

+∇ · (vgA) = 0 (4)

which is proportional to the squared wave amplitude.
(3) and (4) are used together in ray-tracing algo-
rithms where both wave number and wave action
are followed along rays defined by the local group
velocity (e.g. Marks and Eckermann, 1995). The
roots of this theory in the gravity-wave context go
back to a paper by Bretherton (1966) where a wave-
activity conservation law has been derived which has
later on been generalized further (Bretherton and
Garrett, 1968, Bretherton, 1971, Grimshaw, 1975,
Müller, 1976, and Andrews and McIntyre, 1978).

Still, however, a general practical theory for the
wave amplitude in a background medium with space
and time dependence does not exist yet. In Boussi-
nesq fluids wave action conservation seems to be lim-
ited to balanced background states with strictly hori-
zontal flow and it applies not to fields with horizontal
gradients in the stratification. Also divergent back-
ground flows are not included. Especially the first
two of these limitations seem to be a problem for a
direct application to the propagation of small-scale
disturbances in a large-scale gravity wave. Müller
(1976) gives an extension of the wave action conser-
vation equation by formulating a corresponding effec-
tive background-flow dependent growth or damping
rate γ so that

∂A
∂t

+∇ · (vgA) = γA . (5)

Even there, however, associated modifications of the
dispersion relation are neglected although, as is shown
here, they might be important. Moreover, as the
present knowledge in the literature seems to be, their
exists a clear concept of how to obtain the wave-
action conservation equation for balanced background
flows. For the more general case, however, a straight-
forward recipe leading to an equation for the ampli-



tude development along rays does not exist. So far it
was more a trial-and-error approach by which such
equations were found.

For these reasons a general WKB-type approach
has been developed which works for all systems of
coupled linear first-order partial differential equa-
tions with coefficients only varying slowly in time
and space. It leads directly to suitable ray-tracing
equations with the single modification that the wave
amplitude equation now becomes

∂B
∂t

+∇ · (vgB) = ΓB , (6)

where B is just a quasi-wave action (also proportional
to the square of the wave amplitude) which is not
conserved in the case of balanced background flows,
i.e. even then Γ 6= 0. However, it can be shown
that under the circumstances discussed by Brether-
ton (1971) for the Boussinesq case (4) can be derived
from (6).

Leaving all mathematics aside in this abstract,
only an example shall be given of the performance
of the theory. It has been applied to the propaga-
tion of a small-scale gravity wave packet in a larger-
scale wave in a Boussinesq fluid without rotation.
By standard spectral methods the two-dimensional
(x−z) Boussinesq equations, linearized about a time-
dependent gravity wave with horizontal wave length
100 km and vertical wave length 10 km, have been
solved in a periodic 500km× 50km box. The Brunt-
Vaisala frequency is 10−2 s−1. The initial small-scale
wave packet (horizontal wave length 10 km, verti-
cal wave length 2 km) is in the center of the box.
The vertical wind of the initial state and that after
one period of the background wave (approx. 6300
s) is shown in figure 1. Within this time the packet
has, by the interaction with the background wave,
split up into three parts. The corresponding am-
plitudes are shown in figure 2. Using a dispersion
relation incorporating the effects of horizontal shear
in the basic-wave potential temperature the WKB
equations (3) and (6) have also been solved by spec-
tral methods, now however with a much coarser spa-
tial resolution than the complete linear Boussinesq
equations (32 × 32 instead of 256 × 256). This is
the advantage one can gain from the considerably
larger spatial scales in amplitudes than in the phase-
resolving wave structure. The resulting vertical-wind
amplitude after one basic-wave period is shown in fig-
ure 3. Clearly, the agreement with the bottom panel
of Fig. 2 is quite good. Improvements of the new
WKB theory over the one developed by Bretherton
(1966, 1971) can be seen in explicit ray-tracing solu-
tions of the equations. A ray is followed which starts
right at the center of the wave packet. The vertical-
wind amplitude from the wave-resolving model and
from the new WKB theory is shown in figure 4. They

Figure 1: Vertical wind in the initial wave packet
(top), and after one period of the background wave.
Units are meaningless

Figure 2: As Fig.1, but now for the amplitude of the
vertical wind.



Figure 3: Prediction of the amplitude of the vertical
wind in the wave packet by the WKB theory, to be
compared to the bottom panel of Fig. 2. Also shown
is the zonal wind in the background wave (contour
intervals 1 m/s).
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Figure 4: Vertical-wind amplitude along a ray start-
ing at t=0 at the wave packet center, as calculated
(1) in the exact wave-resolving model and (2) via the
ray-tracing equations from the WKB theory.

are in good agreement. This is to be compared to fig-
ure 5 where an analogous result from a calculation
with the classical WKB theory is shown. There the
simulation of the true amplitude is not so bad either,
but definitely worse than in the more general theory.

In summary, a new WKB theory has been de-
veloped for the amplitude of small-scale structures
in a slowly varying background. It can be shown to
be well suitable for the numerically efficient predic-
tion of wave number and amplitudes in convectively
stable Boussinesq fluids. Applications to other me-
dia should not pose serious problems. Viscosity and
heating are incorporated. One future improvement
might be to also include these in the dispersion re-
lation. This could help in the treatment of critical
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Figure 5: As Fig. 4, but now using the classical
WKB ray-tracing equations.

layers which is so far not possible due to the associ-
ated singularity in the wave number. An even more
challenging problem are convectively unstable situ-
ations. Given the gain in efficiency by the WKB
approach intensive research in this direction might
yet be worthwhile.
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