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1. INTRODUCTION

In recent investigations of equatorial
Rossby waves (Boyd, 2002), we found that
multiple branches could co-exist at the same
phase speed. One branch of contra-rotating
vortex solitons has a linear relationship
between potential vorticity and streakfunction;
the other branch has a strongly nonlinear
relationship. Initial-value numerical experiments
showed both modes were stable at very large
amplitude.

Higher latitudinal Rossby mode solitary
waves are "weakly nonlocal" (Boyd, 1998b).
Numerical experiments show  there is good
agreement with theory about the amplitude
(exponentially small in the reciprocal of the core
amplitude) and wavelength of the weak Rossby
waves that radiate away from the soliton core.

Equatorial Kelvin waves exhibit a more-
complicated behavior that may be dubbed the
"CCB Scenario". That is, for small amplitude,
the weak dispersion induced by mean
equatorial currents is able to balance nonlinear
steepening; the Kelvin cnoidal and solitary
waves are approximate solutions of the
Korteweg-deVries equation in longitude and
time (Boyd, 1984).

For large amplitude, Kelvin waves
steepen and break. The ensuing fronts have
dispersive ripples radiating westward from the
front because of Kelvin-gravity wave resonance
so that the fronts are "weakly nonlocal" (Boyd,
1998a, b).

We conjecture that the boundary
between traveling waves of permanent form
and breaking is a so-called "corner" wave, that
is, a wave whose peak is a discontinuity of
slope. Stokes knew as early as 1847 that
ordinary surface gravity waves exhibited the
Cnoidal/Corner/Breaking scenario and in that
year showed that the two sides of the crest met
at an angle of 120 degrees.

Many other wave species exhibit
qualitatively similar behavior as illustrated in
Fig. 1.However, it is only in recent years with
the advent of fast numerical initial value
experiments that it has become clear that the
corner wave is an attractor for some wave
species, and therefore especially interesting
(Shefter and Rosales, 1999). In the presence of

small viscosity, large amplitude waves break
and then rapidly decay to the corner wave, after
which further decay is extremely slow so that
the wave remains close to the corner wave for
a large portion of its life.
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Fig. 1. Travelling waves of the
Ostrovsky-Hunter equation; all waves larger
than the corner wave (upper curve) steepen
and break because wave dispersion is
inadequate in this wave equation to counteract
such strong nonlinear steepening.

Initial-value experiements with the
shallow water wave equations on an equatorial
beta-plane suggest that the equatorial Kelvin
wave is not as strongly attractive as  the one-
space dimensional corner wave of  Shefter and
Rosales. Nevertheless, the boundary between
breaking/nonbreaking does seem to be a
corner wave, and large amplitude Kelvin waves
decay to a coherent travelling wave that
resembles the corner wave except for some
asymmetry about the crest in the east-west
direction.

The most direct way to study the Kelvin
corner wave is by solving a two-dimensional
nonlinear eigenvalue problem as in some of the
computations of Boyd(2002). However,
because of the slope discontinuity at the crest,
standard numerical algorithms require a rather
large number of degrees of freedom.
Furthermore, a branch of travelling waves dies
at the corner wave with no solutions existing for
larger amplitude. At this end-of-branch, the
convergence of a Newton-Raphson iteration is
more than a little erratic.



We have therefore been forced to
develop new analytical and numerical
strategies. Some early successes in one space
dimension are catalogued in Boyd(2003a,b).

For the Kelvin wave, we report some
calculations using the so-called "four-mode"
model in which the latitudinal dependence is
represented by four Hough-Hermite modes.
The four-mode model definitely has a corner
wave; interestingly, the velocity and pressure
have discontinuous slope, but the north-south
velocity has continuous first derivative at the
crest of the corner wave (Fig.2)
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Fig. 2. Plots of the four unknowns in the four-
mode model as functions of nondimensional
longitude x. S0(x) and S2(x) are the lowest two
Hermite coefficients of the Hermite function
series in latitude y for the "sum" variable, p+u;
D0 is the coefficient of the lowest Hermite
function, exp(-y2/2), for the "difference" field, p-
u; aleph is the x-integral of the north-south
velocity. Only positive x (longitude) is illustrated
because all fields are symmetric with respect to
x=0. All smooth symmetric functions have zero
slope at x=0; the nonzero slopes at the origin
for three of the four fields imply discontinuities
in slope at x=0 for S0, S2 and D0(x).The corner
wave is shown for a particular choice of mean
currents; the shape and amplitude vary with the
mean flow. In the absence of nonlinearity and
mean, a Kelvin wave has all amplitude in S0
only; this latitudinal mode is still dominant for
the Kelvin corner wave in shear flow.

More ambitious studies which attack
the two-dimensional eigenproblem using the
so-called Kepler mapping to resolve the crest
are in progress.
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