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1. INTRODUCTION
Intense atmospheric vortices are the common fea-

ture of many important weather phenomena, occurring
over wide scales from tornadoes to hurricanes to midlati-
tude cyclones. The interactions of these vortices with the
surface (and humanity) is mediated by the swirling
boundary layers which develop beneath them. Solutions
describing such boundary layers, such as those from
Ekman, Eliassen, and Von Karman, provide useful
insight into their structure and behavior.

Observational, experimental, and numerical studies
have shown that such swirling layers are generally unsta-
ble, and will develop quasi-streamwise rolls once they
reach a sufficient intensity (Faller, 1963; Lilly, 1966;
Savas, 1987; Lopez and Weidman, 1996; Wurman and
Winslow, 1998; Montgomery et al., 2001). It is likely that
these circulations enhance upward fluxes of heat and
moisture from the surface (thereby influencing storm
intensity) and also enhance downward fluxes of momen-
tum toward the surface (thereby increasing damage
potential).

These instabilities are analyzed using a model of lin-
earized dynamics which allows for arbitrary structure of
the axisymmetric vortex and its frictionally induced sec-
ondary circulation. The ultimate goal of this work will be
the study of atmospheric vortices with stratification, spa-
tially varying densities, and turbulent mixing. In the
present work, we restrict our attention to swirling bound-
ary layers beneath simple vortices with constant densi-
ties and eddy viscosities.

2. THE SYMMETRIC AND ASYMMETRIC
TORNADO-HURRICANE EQUATIONS

Due to space limitations, we cannot provide a com-
plete analysis of the equations, but we will instead
describe the general approach; details are available in
Nolan and Montgomery (2002b) and Nolan and Grasso
(2003). We start from the anelastic momentum equa-
tions for dry adiabatic motions in cylindrical coordinates.
These are comprised of the momentum equations for the
radial (u), azimuthal (v), and vertical winds (w), the con-
servation of potential temperature (θ), and the anelastic

(density weighted) incompressibility condition. For the
puposes of generality, the effects of temperature and
density variations and the earth’s rotation are included in
the present exposition. The equations are linearized for
small perturbations about the basic-state flow, and these
perturbations are assumed to have the form

, (1)

such that all variables vary exponentially in the azimuthal
direction for some wavenumber n, but may have arbitrary
structure in time and in the radial and vertical directions.
After linearization and substitution for the perturbation
variables in the form of (1), we have:

, (2)

, (3)

, (4)

, (5)

, (6)

where g is the gravitational acceleration, f is the Coriolis
parameter, is the (fixed) anelastic density field, pn is
the perturbation pressure, is the basic-state
angular velocity, and the basic-state material derivative
is

. (7)

We refer to (2)-(7) as the symmetric (for n = 0) or asym-
metric (for n > 0) tornado-hurricane equations. Since
hurricanes can be represented to first order as a vortex
in gradient wind and hydrostatic balance, with no sec-
ondary circulation, we call these equations with

the symmetric/asymmetric hurri-
cane equations. Alternatively, since the dynamics of tor-
nadoes are represented accurately by an incompressible
vortex driven by overhead convection, we shall call the
equations with constant, and (5) neglected, the
symmetric/asymmetric tornado equations. Diffusion
terms have been omitted here, but are included.
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For n > 0, observe that there are no derivatives
operating on vn in (6), such that vn can be eliminated in
favor of un and wn. The same applies for pn in (3), and
thus pn may also be eliminated. Through various manip-
ulations we are left with three coupled, linear equations
for un, wn, and θn. Note that this approach cannot be
used for n = 0; in this case, p0 may be eliminated through
the use of a streamfunction ψ0, leading to three equa-
tions for ψ0, v0, and θ0.

Here, we use the symmetric and asymmetric tor-
nado equations exclusively, with f = 0. Similar analyses
for tornado-like vortices were presented by Nolan and
Montgomery (2002a). The effects of variable density and
stratification remain for future work.

3. SWIRLING BOUNDARY LAYERS FROM AN
AXISYMMETRIC MODEL

The swirling boundary layers are generated with a
numerical model of axisymmetric, incompressible fluid
flow (Nolan and Farrell, 1999). We consider two distinct
cases. A “laboratory” vortex is created from the impulsive
spindown of fluid in solid body rotation over a stationary

lower surface with a no-slip boundary condition. The
domain is a cylinder with a (dimensionless) radius R =
8.0 and height Z = 2.0. The fluid initially rotates at an
angular velocity Ω = 1.0. The kinematic viscosity ν =
0.001. Free-slip boundary conditions are enforced at the
other domain edges. A boundary layer quickly develops
along the lower surface (Fig 1a, 1b). Shortly afterwards,
axisymmetric roll instabilities appear near the outer wall
and propagate into the domain (Fig 1c). It is worth noting
that these waves appear almost immediately after the
azimuthal wind field develops a low level jet, as indicated
in Fig 1a. At later times, these rolls grow in number and
intensity until the boundary layer is swamped with two-
dimensional turbulence.

Following the work of Montgomery et al., 2001, the
second swirling boundary layer is generated from the
impulsive spindown of a “hurricane” vortex with an azi-
muthal wind profile modeled after a intense tropical
cyclone:

(8)
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Figure 1: Swirling flow in the laboratory vortex:
               a) Azimuthtal velocity at t = 1.73.
               b) Radial velocity at t = 1.73.
               c) Vertical velocity at t = 2.57.
               Negative contours are dashed.
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Figure 2: Swirling flow in the hurricane vortex.
               a) Azimuthal velocity at t = 3660 s.
               b) Radial velocity at t = 3660 s.
               c) Vertical velocity at t = 7210 s.
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where , RMW = 12 km is the radius of
maximum winds, and Vmax = 60 ms-1. This velocity pro-
file has solid-body rotation in the core, transitioning to a
1/r profile in the far-field. The model domain extends to R
= 80 km and Z = 10 km. The vortex interacts with a
“semi-slip” lower boundary condition commonly used in
meterological modeling to represent the stress caused
by turbulent drag over a rough surface, i.e.,

(9)

where V is the absolute wind speed at the surface and
Cd is a drag coeffcient set to a typical value of 0.002. The
internal eddy viscosity ν = 100 m2s-1. This boundary
layer is a little more complicated, with maximum radial
inflow and vertical motion appearing near the radius of
maximum winds as predicted by Eliassen (1971) (Fig.
2a). In contrast with the “laboratory” vortex, there is also
a significant outward return flow just above the boundary
layer near the RMW (Fig. 2b). As time evolves, axisym-
metric rolls develop in this region and propagate inward
at approximately 4 ms-1 (Fig. 2c).

4. NUMERICAL SOLUTION
The symmetric and asymmetric tornado equations

are discretized onto an Arakawa-C grid in the r,z plane.
Through standard techniques the linear equations may
be transformed into the linear dynamical system

, (10)

where xn is a column vector whose elements contain the
values of each free variable at each gridpoint. The eigen-
vectors of the matrix Tn are the modes of the system.

Some practical difficulty lies in the size of the matrix
Tn. Using a regularly spaced grid, one might need as
many as 100 points in each of the radial and vertical
directions for sufficient resolution of the boundary layers.
The size of Tn would then be on the order of
20000x20000. To overcome this difficulty we use grids
that are stretched in both the radial and vertical direc-
tions, such that a large number of gridpoints are packed
into the lower levels of the inner core of the vortex. For
the laboratory vortex, the gridpoints are not stretched
radially. In both cases, there are 35 points in the radial
direction and 50 points in the vertical direction. The mini-
mum vertical grid spacing is ∆z = 0.0147 for the labora-
tory vortex and ∆z = 97 m for the hurricane vortex.

5. UNSTABLE MODES IN THE LABORATORY
VORTEX

The basic-state to be studied is generated from a
time average of the swirling flow from shortly before to
shortly after the appearance of the axisymmetric instabil-
ties. For n = 0 (axisymmetric modes), the most unstable
mode is found to have an e-folding time of 1.24 (dimen-
sionless) time units. The real and imaginary parts of this
mode are shown in Fig. 3a and 3b. The existence of
complex values in this eigenvector and its associated
eigenvalue are indicative of an apparent inward propaga-
tion of the phase lines of the growing mode. [The physi-

cal solution is the real part of , where s is the
complex eigenvalue. For Re{s} > 0, the physical solution
evolves as Re{wn} --> -Im{wn} --> -Re{wn} --> Im{wn}.]
However, asymmetric modes for n = 1 grow slightly
faster, with an e-folding time of 1.12. A horizontal cross-
section of this mode is shown in Fig 3c. Interestingly, this
mode spirals in the “wrong” direction, at an angle to the
shear vector. Such modes have indeed been observed in
laboratory experiments (Faller, 1963; Savas, 1987).
Other unstable eigenmodes for this flow, with growth
rates nearly as large as the most unstable more, did spi-
ral in the same sense of the flow. Energetic analyses for
these symmetric and asymmetric instabilities find that
80-90% of the basic-state to perturbation energy conver-
sion is associated with the vertical shear of the azimuthal
wind.

The analyzed instabilities have shorter radial wave-
lengths than those seen in the axisymmetric numerical
simulation. However, the modes in the simulations are
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Figure 3: Most unstable modes in the laboratory vortex.
a) Real part of w for n = 0.
b) Imaginary part of w for n = 0.
c) Horizontal cross section (real part) for n =1.



clearly excited by the recirculating corner flow at the
outer edge of the domain (see Fig 1c), and thus may be
biased toward larger scales.

6. UNSTABLE MODES IN THE HURRICANE
VORTEX

This analysis was repeated for the hurricane vortex
swirling boundary layer. As the lower boundary condition
for this flow is nonlinear and inhomogeneous, the lower
boundary conditions for the linear modes were made
free slip as a first approximation to a semi-slip boundary
condition with a low drag coefficient. For n = 0, the most
unstable mode has an e-folding time of 0.36 h; its real
and imaginary parts are shown in Fig 4a and 4b. As in
the nonlinear simulations, the unstable waves are found
to propagate inward, but at a much faster speed of about
10 ms-1. Asymmetric modes are again more unstable;
for n = 1, the e-folding time is 0.29 h, with a “reverse” spi-
ral structure as shown in Fig 4c. For these modes (sym-

metric and asymmetric), approximately half the energy
conversion is associated with each of the vertical and
radial shears of the azimuthal wind, indicating that the
instability mechanism may be of a different nature than
for the laboratory vortex. However, these results should
be viewed with caution until a lower boundary condition
can be implemented for the linear model which more
accurately reflects the semi-slip drag law (9).

7. CONCLUSIONS
This work represents a step further toward a thor-

ough understanding of the dynamics of instabilities in the
boundary layers of atmospheric vortices. For simple vor-
tices in incompressible fluid flows, the linear model
recovers the instabilities suggested by both numerical
simulations and observations. Preliminary analyses indi-
cate the instabilities in the hurricane-like vortex are quite
different from those in the laboratory spin-down experi-
ments. Future work will extend this approach to fully
compressible, stratified flows, using the complete sym-
metric and asymmetric tornado-hurricane equations.
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Figure 4: Most unstable modes in the hurricane vortex.
               a) Real part of w for n = 0.
               b) Imaginary part pf w for n = 0.
               c) Horizontal cross section (real part) for n = 1.
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