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1. INTRODUCTION

Balance is a central theme in geophysical fluid dynamics.
The atmosphere displays vortical and inertia-gravity wave
motion. However, observations suggest that some of this
motion may be considered as noise. A balanced theory
of atmospheric motion would propose relationships be-
tween the dynamic variables that eliminate or minimize
this noise, thus providing a clearer picture of the physics.

Classically, there are two approaches corresponding to
two distinct balance regimes. The small Rossby num-
ber limit (Charney, 1948) corresponds to a rapidly rotating
flow and, as is well known, yields the quasi-geostrophic
equations. The small Froude number limit (Charney,
1963) corresponds to a strongly stratified flow and was
originally developed for the tropics, where the Rossby
number is unbounded. In both cases, small values of
a dimensionless parameter characterize a particular bal-
anced dynamics, i.e. a particular submanifold of phase
space. Assuming an asymptotic expansion in this param-
eter, we may write a hierarchy of dynamical equations.

The derivations of these two classic models are heuristic
and completely independent. Although there are ad hoc
methods to combine them a posteriori, a more general
theory would incorporate both cases systematically and
simultaneously. It is hoped that such an approach might
ultimately yield uniformly valid balance equations over the
entire sphere. This would solve a failure of geostrophic
balance since these equations break down at the equator
where the Rossby number tends to infinity.

Fundamentally, balance is predicted when the dynam-
ics admits motion with vastly different time scales. For
geophysical flows, balance requires the time scale of the
vortical motion to be significantly larger than that of the
inertia-gravity waves. In the language of Warn et al.
(1995), the vortical motion is described by slow variable,
s, and the inertia-gravity waves by fast variables, f . The
balance theory is complete when we can write the equa-
tions in the form

∂s

∂t
= S(s, f ; ε), (1)

∂f

∂t
+

Λf

ε
= F(s, f ; ε). (2)

where Λ is a linear invertible operator, S andF are nonlin-
ear functions, and ε is a small asymptotic parameter. We
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shall therefore define ε to be a dimensionless time scale
separation parameter, small values of which will charac-
terize balance, rather than a particular balance regime.
This simple fact makes ε the correct asymptotic parame-
ter for a general theory of balance. No further assump-
tions are necessary. In particular, the balance of terms in
the momentum equations is not considered.

2. THE f -PLANE EQUATIONS

First, consider the rotating shallow-water equations in
standard Cartesian coordinates,
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where (u, v) is the horizontal fluid velocity, f is the (con-
stant) Coriolis parameter, h is surface height and g is the
constant acceleration due to gravity.

Linearizing about a rest state and assuming a non-linear
frequency broadening, the dispersion relation has solu-
tions

ω0 ∼ Uκ, ω± ∼ Uκ ± � f2 + gHκ2, (6)

whereU is some characteristic flow speed,H is the mean
fluid depth, κ2 = k2 + l2 and k and l are wave numbers
in the x and y directions respectively. The ratio of the fast
time scale to the slow time scale is

ω0

ω+
∼ 1

1 +

√
R2+F2

RF

. (7)

where R = Uκ/f is the Rossby number and F =
U/

√
gH is the Froude number. Clearly, this ratio will be

small if and only if

ε =
RF√
R2 + F 2

� 1. (8)

Notice that

min[R,F ]√
2

≤ ε ≤ min[R,F ]. (9)

As an asymptotic parameter for balance, ε is equivalent
to min[R,F ], and yet was determined solely from the



physics of the equations. We can understand this by real-
ising that a dynamical system, initialized on a slow mani-
fold, will remain there if no fast motion is excited. Looking
at the dispersion relation graph (figure 1), this occurs if
the potential for frequency matching is minimal. There
are, evidently, two ways to do this: either the slope of
the vortical motion curve can be made smaller relative
to the slope of the inertia-gravity wave curve, i.e. F can
be made small, or the inertia-gravity wave curve can be
shifted upwards by an increase in f , i.e. R can be made
small. As noted above, both of these possibilities are cap-
tured in the small ε, time scale separation, limit.
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Figure 1: The dispersion curves for the f -plane. ωG

corresponds to ω± (inertia-gravity waves) and ωV to
ω0 (vortical motion).

Appropriately non-dimensionalising and using new dy-
namic variables, (3)-(5) take the form (1)-(2):

∂q

∂t
= −∇φ · ∇q − J(ψ, q), (10)
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∇2 [∇φ · ∇φ+ 2J (ψ , φ)] ,
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= (1 − b2)∇2[∇ · (η∇φ) (12)

+J (ψ , η)]

−b �∇ · (∇2ψ∇φ) + J � ψ ,∇2ψ ��� ,
where q = (∇2ψ − bη)/(1 + εη), D = ∇2φ,
Γ = � b∇2ψ − (1 − b2)∇2η � , b = B/

√
1 +B2 =
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R2 + F 2, B = F/R, J (f , g) = ∂f
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− ∂f
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∂g
∂x

,
A = b2 − (1 − b2)∇2 and we have used h = 1 + εη and
(u, v) = ∇φ+ k̂ ×∇ψ.

There is no singularity in these equations as b ranges be-
tween 0 and 1. Thus ε is our sole singular perturbation
parameter; special limits can subsequently be considered
by treating b (i.e. B) as a regular perturbation parameter.

The analysis proceeds as is typical of an asymptotic ex-
pansion except that we assume the slow variable exact

and expand only the fast variables (see Warn et al. 1995).
To first order we get

∂q

∂t
= −J(ψ0, q), (13)

= −J
���

∇2 − b2

1 − b2 � −1

q , q 	 . (14)

This looks just like the quasi-geostrophic (QG) equation
for shallow water flow. However, our derivation shows that
it is not a QG equation; no assumption ofR � 1 has been
made, only that ε � 1. In particular, the flow need not be
geostrophic. In the standard QG limit R → 0, F → 0 with
b (i.e. B) held fixed. Of course, our system (14) applies
to this case and is consistent. Higher order models can
be obtained systematically. Furthermore, special limits R
fixed, F → 0 (small F limit) and F fixed, R → 0 (PG limit)
may also be found, taking care to interpret b correctly.

The above analysis is limited to a planar geometry. Be-
fore we can consider the sphere we must understand the
physical differences between the two. Significantly, the
Rossby number, Uk/f , tends to infinity at the equator;
clearly small Rossby number (Uk/f ) balance will fail in
any generalized theory of balance. As such, we now fo-
cus on a model valid near the equator that incorporates
only this one difference.

2 THE EQUATORIAL β-PLANE

In standard coordinates the governing equations are
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where (u, v) is the horizontal fluid velocity, β is the first
derivative of the Coriolis parameter w/r to y, h is surface
height and g is the constant acceleration due to gravity.

Linearizing about a rest state and assuming a non-linear
frequency broadening the dispersion relation has solu-
tions

ω0 ∼ Uk − βc2k

(2n+ 1)βc + c2k2
, (18)

ω± ∼ Uk ± � (2n + 1)βc + gHk2, (19)

whereU is some characteristic flow speed,H is the mean
fluid depth, k is a wave number in the x direction and n is
a non-negative integer indexing the Hermite polynomial
factors of the solutions, which, in some sense, may be
thought of as a squared wave number in the y direction.
The ratio of the fast time scale to the slow time scale is

ω0

ω+
∼

1 + F
R2+(2n+1)F2
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, (20)



whereR = Uκ/
√
βc is an equatorial Rossby number and

F = U/
√
gH is the Froude number. The situation is con-

siderably more complex now. Nevertheless, we can see
immediately that larger values of n only make this quan-
tity smaller. Assuming the worst case, we take n = 0. It
follows that this ratio will be small if and only if the simul-
taneous conditions

ε1 =
RF√
R2 + F 2

� 1 (21)

and

ε2 =
RF 2

(R2 + F 2)3/2
� 1 (22)

are satisfied.

Notice that

min[R,F ]√
2

≤ ε1 ≤ min[R,F ] (23)

and

1√
8

�
min[R,F ]

max[R,F ] � 2

≤ ε2 ≤ min[R,F ]

max[R,F ]
. (24)

As in the f -plane case, small R or small F is equivalent
to small ε1. However, this is not true for ε2. In fact, using
B = F/R, we find

ε2 =
B2

(1 +B2)3/2
. (25)

Evidently, we need one of F or R small but not both sim-
ilarly small. For then, ε2 does not approach zero; we no
longer have an asymptotic theory.

To understand this further, we consider the dispersion
curves once again (figure 2). Now the slow motion in-
cludes waves with frequency ωR = −βc2k/(βc + c2k2).
It is ε1 small that minimizes the potential for frequency
matching between the inertia-gravity waves and the vorti-
cal motion, exactly as in the f -plane case, while ε2 small
does so between the inertia-gravity waves and Rossby
waves. This is the motivation for our choice of the (equa-
torial) Rossby number: it is the ratio of the frequency of
the vortical motion to the minimum frequency of the fast
motion,

√
βc. F is defined as before with similar inter-

pretation. Note that Rossby waves are present at mid-
latitudes but the ratio of the length scale of motion to
the earth’s radius makes them much slower than inertia-
gravity waves. At the equator f is zero and the Rossby
waves must be included in the analysis.

Another striking difference is the appearance of the Kelvin
wave solution. It is not clear whether this solution should
be considered fast or slow. Up to this point we have been
able to avoid specifying k in our interpretation of fast/slow
motion, or, more precisely, assume moderate values of k.
The Kelvin wave dispersion curve, tangent to both that of
the Rossby wave and the inertia-gravity wave, takes on
both fast and slow frequencies at moderate values of k.

w
R

w
V

w
K

w
G

w

bc

Wave No. k

Figure 2: The dispersion curves for the equato-
rial β-plane. ωG corresponds to ω± (inertia-gravity
waves), ωK corresponds to Kelvin waves, ωV to
ω0 (vortical motion) and ωR corresponds to Rossby
waves (with a sign change for easy comparison).

Now, the analysis requires one single asymptotic param-
eter. We know B = F/R fails, essentially, because
ε2(R,F ) = ε2(B). An alternate function that suggests
itself is

m =
ε2
ε1

=
F

R2 + F 2
. (26)

It is justifiable to choose ε1 and m for a balanced theory.
The resulting balanced equations are partially successful,
failing only to capture the PG limit. It is not that this case
is lost; it needs to be handled separately.

3. SUMMARY

A unified theory of balance on the sphere is well justified
by our intuition and would seem quite possible. That is
to say, the shallow water equations on a rotating sphere
simply incorporate the physics of the above two simpler
models. Indeed, the geometry is more complicated but
we know the dispersion curves are similar. Moreover,
it is only the PG limit that requires special treatment.
Many circumstances, of practical importance restrict such
a possibility. Nonetheless, the time scale separation tech-
nique seems to be the way ahead and holds the most
promise to solving this problem.
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