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1. Introduction and Result

Quasi-geostrophic (QG) turbulence loosely refers to
“chaotic” motions within a rapidly-rotating stably-
stratified fluid, in particular, an atmosphere or
ocean. It is well-known that unforced QG turbulence
can decay by coalescence of small-scale eddies into
large-scale stationary jets or vortices. In this note,
we attempt to predict the 3D end-state of such decay
using a form of Lynden-Bell statistical mechanics.1

For this study, we ignore viscosity, spatial varia-
tion of the Coriolis parameter f , and spatial vari-
ation of the buoyancy frequency N . As such, QG
turbulence is governed by

∂tq + ~v · ∇q = 0, ~v = ẑ ×∇ψ, q = ∇2ψ + ∂zzψ.
(1)

Here, ∇ is the horizontal gradient operator, t is time,
and z is the vertical spatial coordinate, times N/f .
At each height z, the potential vorticity q is ad-
vected horizontally, without changing value. The
(geostrophic) velocity field ~v is obtained from the
cross-gradient of the (scaled) dynamical pressure ψ,
which acts as a streamfunction. The dynamics is
closed by a Poisson equation, which relates ψ to q,
and boundary conditions.

Typical simulations of decaying QG turbulence
employ spectral2 or contour dynamics3 algorithms.
Here, we use a particle-in-cell (PIC) code. In partic-
ular, the code uses roughly ten-million particles, and
a 128× 128× 65 x-y-z mesh. The simulation occurs
in a unit cube, with periodic boundary conditions
in the horizontal coordinates x and y. In addition,
∂zψ = 0 at z = 0 and 1.

The first two columns of Fig. 1 show the begin-
ning and end of a PIC simulation of decaying QG
turbulence. At t = 0, the flow consists of Gaussian
red noise, with mean and r.m.s. potential vorticity
(PV) equal to zero and one, respectively. In time,
small regions of positive or negative PV chaotically
advect, and merge with others of like-sign. Ulti-
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mately (t = 500), the flow settles into a single pair
of vertically aligned, counter-rotating vortices.

We may hypothesize that the initial turbulence
of this flow acts to randomly redistribute PV, in a
manner that conserves the integral invariants of QG
dynamics. There are many conceivable end-states
of this random stirring, but we would expect to see
the most probable, i.e., the maximum entropy state

(MES).

Figure 1 juxtaposes the end-state of the simula-
tion to a theoretical MES, described in the following
section. The two are in good qualitative agreement,
verifying that the observed coalescence and vertical

alignment of like-sign PV is the expected result of

random, but constrained, stirring. However, the sim-
ulated vortex cores have higher than “expected” lev-
els of PV. This result might have been anticipated.
Many past studies of 2D turbulence also demon-
strate the qualitative success of maximum entropy
theory, but rarely show perfect agreement.4 The dis-
crepancy is likely caused by inefficient redistribution
of PV within the cores of intense vortices, even dur-
ing merger.5

Note: The author believes that a higher reso-
lution spectral simulation, with sufficiently small
hyper-viscosity, would produce a similar discrepancy
with the MES. A check is currently planned.

2. Maximum Entropy Theory

The MES in Fig. 1 was calculated using a form
of Lynden-Bell statistical mechanics,1 which has
been distinguished from classic point-vortex theory6

and energy-enstrophy theory.7 Lynden-Bell theory
and its close cousins were used previously to un-
derstand the relaxation of turbulence in 2D Euler
flow,8 and in few-layer models of atmospheric and
oceanic flow.9 The following outlines a fully 3D
quasi-geostrophic theory, which, to the author’s
knowledge, has not been published elsewhere.

We first consider a small box centered at a point ~r
in the fluid (Fig. 2). This macro-cell contains many
micro-columns, which advect the “fine-grained” PV
distribution q in the horizontal plane. Let f(~r, σ),
times dσ, denote the fractional volume of a macro-



Figure 1: The end-state (t = 500) of turbulent decay in a PIC simulation compares favorably to maximum
entropy theory. Top: x-averaged PV distributions. Bottom: z-averaged PV distributions. The contours
are evenly spaced in PV. Solid/dashed contours indicate positive/negative PV. MES: β = −17.6, .41 <
|µ±(z)| < .89.

cell that is filled by micro-columns that carry PV in
the range [σ, σ + dσ]. The sum over σ of fractional
volumes is unity; therefore,

F (f ;~r) ≡

∫
dσf = 1. (2)

We now define the entropy S of the distribution
function f . Let S be the logarithm of the number
of ways to arrange the micro-columns, within all of
the macro-cells, keeping f fixed. By analogy to the
entropy of an ideal 2D fluid,8 we obtain

S(f) = −

∫
dxdydzdσ f ln(σof), (3)

for an ideal 3D QG flow. Equation (3) ignores in-
cidental additive and multiplicative constants, and
σo is an arbitrary PV, making the argument of the
logarithm dimensionless.

The statistically most probable distribution func-
tion f is that which maximizes S in a subspace that
conserves the invariants of QG dynamics. One such
invariant is the total horizontal area, at any height z,
that is filled by micro-columns with PV in the range
[σ, σ+ dσ]. This quantity is directly proportional to

Γ(f ; z, σ) ≡

∫
dxdy f. (4)
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Figure 2: Cartoon of a macro-cell filled with
microscopic carriers of “fine-grained” PV (micro-
columns). Different shades of grey represent differ-
ent values of PV.

Another crucial invariant is the energy. Up to a
constant factor, the energy is given by

E(f) ≡ −
1

2

∫
dxdydz q̄ψ̄, (5)

in which

∇2ψ̄ + ∂zzψ̄ = q̄ ≡

∫
dσσf. (6)

Here, q̄(~r) is the PV distribution averaged over a
macro-cell, i.e., the “coarse-grained” PV, and ψ̄(~r)
is the corresponding streamfunction. We interpret q̄
as the observable PV distribution. Conceivably, the
conserved energy E has an additional microscopic



component. However, it has been shown elsewhere
(for the 2D analogue) that this microscopic compo-
nent is negligible.8 Henceforth, we will refer to the
conserved values of E(f) and Γ(f ; z, σ) as Eo and
γ(z, σ), respectively.

Extrema of S, in the constrained subspace of f ,
are found by setting equal to zero the first variation
of

S′(f) ≡ S(f) − βE(f) −

∫
dzdσµ(z, σ)Γ(f ; z, σ)

−

∫
dxdydz ξ(~r)F (f ;~r).

(7)
Here, β, µ(z, σ) and ξ(~r) are Lagrange multipliers.
The equation δS′/δf = 0, in combination with (2),
has a solution at f = f∗, where

f∗(~r, σ) =
eσβψ̄∗(~r)−µ(z,σ)∫
dσ′eσ′βψ̄∗(~r)−µ(z,σ′)

, (8)

and ψ̄∗ satisfies

∇2ψ̄∗ + ∂zzψ̄∗ = q̄∗ ≡

∫
dσσf∗, (9)

with the appropriate boundary conditions. The val-
ues of the Lagrange multipliers in (8) are determined
by E(f∗) = Eo and Γ(f∗; z, σ) = γ(z, σ).

Let q̄o(~r) denote the form of q̄ at t = 0. Although
this function provides a unique value for Eo, it does

not provide a unique γ(z, σ). The values of γ(z, σ)
follow from an additional set of assumptions. The
author has tried several, but we here discuss only the
simplest. The more complex theories yield nearly
the same q̄∗, for the example under consideration
(Fig. 1).

We will assume that each micro-column has one of
only 3 discrete levels of PV: σ+(z), σ−(z) or 0, where
σ+(z) and σ−(z) are the maximum and minimum of
q̄o at height z. Then,

γ(z, σ) = αo(z)δ(σ)+
∑
j=+,−

αj(z)δ[σ−σj(z)], (10)

where αo = A− α+ − α−, A is the area of the hor-
izontal domain, and δ is a Dirac distribution. If we
further assume that the + and − species are initially
segregated, then

α±(z) =

∫
dxdy H(±q̄o)q̄o/σ±, (11)

in which H(σ) = 1, 0 for σ > 0, σ < 0.
In the 3-level model (10), the equation

Γ(f∗; z, σ) = γ(z, σ) can be satisfied only if

e−µ(z,σ) = δ(σ) +
∑
j=+,−

e−σj(z)µj(z)δ[σ − σj(z)].

(12)

That is, f∗ must have the special form

f∗(~r, σ) =
δ(σ) + δ(σ − σ+)eσ+Φ+ + δ(σ − σ−)eσ−Φ−

1 + eσ+Φ+ + eσ−Φ−

,

(13)
in which Φ±(~r) ≡ βψ̄∗(~r) − µ±(z). By substituting
(13) into the r.h.s. of (9), we obtain

∇2ψ̄∗ + ∂zzψ̄∗ = q̄∗ =
σ+e

σ+Φ+ + σ−e
σ−Φ−

1 + eσ+Φ+ + eσ−Φ−

. (14)

The values of Eo and α±(z) determine β and µ±(z).
To find the Lagrange multipliers, β and µ±(z), of

the MES, we used an iterative scheme that is similar
to the 2D algorithm in Turkington and Whitaker.10

The resulting q̄∗ is the right-most column of Fig. 1.
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