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1. INTRODUCTION

An eddy-driven jet is necessarily self-sustaining.
Baroclinic eddies generated at the base of the jet
propagate vertically and meridionally before
dissipating.  The resulting momentum fluxes sustain
the zonal winds in the core of the jet aloft, while the
secondary circulations that arise in response to
irreversible eddy transports of heat and momentum
sustain the baroclinicity at the base of the jet (cf.
Robinson 2000).  That baroclinic eddy generation is
enhanced in the presence of stronger near-surface
temperature gradients, which are in turn enhanced by
the action of the eddies, sounds alarmingly like
perpetual motion.  The eddies, however, must be
dynamically possible and they must be sustained
against dissipation.  Thus, the eddy-driven jet must
occur within a broader preexisting baroclinic zone, and
its strength is constrained by the requirements that the
eddies can exist and can extract energy from the zonal
flow.

Within the context of quasi-geostrophic dynamics,
eddies gain energy from the zonal flow at a rate (per
unit mass) given by,
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where notation is standard, and the inclusion of the
important lower boundary term is implied. For the
eddies to gain energy from the zonal flow, their
equatorward transport of potential vorticity (Eliassen-
Palm flux convergence) aloft must occur where zonal
winds are stronger than in the regions at or near the
surface where the eddies transport potential vorticity
poleward (EP-flux divergence). For a given spatial
pattern of EP-flux convergence and divergence, as the
strength of these eddy fluxes and the resulting eddy-
driven jet increases, zonal winds increase in the eddy-
generation region near the surface, and decrease in
the eddy absorption region aloft, decreasing the r.h.s.
of (1). Thus, as the eddy-driven portion of the jet
becomes stronger, the transfer of energy from the
zonal flow to the eddies is reduced.
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Here we consider these feedbacks in a very
simple context.  Explicit calculation of the eddies is
avoided.  Instead, idealized distributions of eddy
generation and dissipation are assumed.

2. WAVE-MEAN FLOW BALANCE

We begin by considering a quasi-geostrophic
steady state in which eddy transports of potential
vorticity are balanced by Ekman drag at the lower
boundary and by linear thermal relaxation in the
interior. The zonally averaged potential-vorticity
equations in the interior and at the lower boundary
become,
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where tN and tE are radiative and Ekman damping
times, S is a static stability parameter (taken as
constant in what follows), and pb is the pressure at
the top of the boundary layer.  The potential
vorticity, q, at the lower boundary has its usual
definition, proportional to the lower-boundary
temperature.

3. AN IDEALIZED EDDY-DRIVEN JET

We consider eddy forcing and zonal winds that
vary sinusoidally with y . The eddy fluxes of
potential vorticity are assumed to be confined to
the lower boundary, and to one interior layer, p=pf.
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(3)

The y-invariant contributions to the fluxes insure
that they are poleward everywhere at the surface
and equatorward everywhere aloft.  These
contributions do not affect the solution to (2), but
they are important for the energetics.

Substituting (3) into (2) and solving yields,
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The solution is a jet, with its maximum at y=0. The
jet has a barotropic component, and is entirely
barotropic above the forcing level (pf).

As discussed above, the eddies that drive this
jet can exist only if there is a background
baroclinic flow, here assumed to be a uniform
vertical shear with respect to pressure, U=L(pb-p).
The transfer of energy from the zonal flow to the
eddies may be calculated from (1). Including the y-
invariant portions of the potential-vorticity fluxes in
(3) gives,
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where Uf=L(pb-pf). The first term represents the
energy extraction from the background baroclinic
flow, while the negative term results from the
interaction of the y-varying part of the eddy forcing
with the jet it induces.

The maximum rate of energy conversion with
respect to the strength of eddy forcing, A, is,
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This rate increases with the meridional scale of the
jet, and, for Earth-relevant parameters, continues
to increase strongly at the largest meridional
scales that fit on the planet.  Thus (6) conveys no
information about the scale of an eddy driven jet.
It does, however, include the “barotropic governor”
(James & Gray 1986), in that the maximum energy
conversion decreases as the Ekman drag
weakens (tE becomes large).  This is a response
to the barotropic component of the jet.  When the
barotropic portion of the jet is suppressed by very
strong Ekman dissipation, however, the energy
transfer is still limited, for strong eddy forcing, by
the reduction of zonal winds on the wings of the
eddy-driven jet.

4. AN EDDY-DRIVEN JET WITH DIFFUSIVE
HEAT TRANSPORT

To predict a finite meridional scale, the
derivation of (6) must be modified to include some
dependence of near-surface eddy heat transport
on the baroclinicity of the zonal flow, the positive
feedback described in the introduction.  This is
most simply treated as diffusion. Thus,
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where k is a diffusion coefficient. If the structure of
eddy fluxes assumed in (3) is retained, (7) is
consistent with (2) only when,
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The strength of the eddy driven part of the flow
is set by requiring,
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which must be the case if the diffusive treatment is
to apply to the y -invariant as well as to the
sinusoidal portion of the flow (i.e. for (3) to be
consistent  with (8)). Under these constraints, the
rate of energy transfer from the zonal flow to the
eddies is given by,
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The value of k which maximizes this transfer,
implies, through (8), a meridional wavenumber
given by,
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For reasonable values of parameters:
S ~ 5 10-3 Pa2m-2, tE < tN, and a middle to upper
tropospheric value for pf, (11) gives plausible
values for the width of the jet.  It is, however,
difficult to know how seriously to take this
“prediction” of jet scale, in that the set-up is highly
constrained and idealized, pf is a free parameter,
and any direct effect on the eddies of changing
dissipation parameters is ignored.  On the other
hand, this approach appears to be the simplest
that takes into account the fundamental positive
and negative feedbacks on the strength of an
eddy-driven jet.
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