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1 The Problem

Vortices abound in planetary flow. Familiar
examples are the Gulf Stream rings, hurricanes
and the polar stratospheric vortex. Many vortices
exhibit a tendency to become symmetric, that is,
vertically aligned, and circular in the horizontal
plane. For example, numerical simulations indicate
that the vortices of planetary turbulence sym-
metrize on average [1], although individual vortices
may retain some degree of tilt and ellipticity [2].
Furthermore, symmetrization can, in principle,
contribute to the intensification of a swirling storm,
such as an incipient tropical cyclone [3,4]. Because
of its ubiquity, and possible relevance to weather
forecasting, we are motivated to study the funda-
mental physics of vortex symmetrization.

2 Background

Early studies of symmetrization focused on ideal
2D vortices, which are in many respects analogous
to atmospheric cyclones and ocean eddies. In their
seminal paper (1970), Briggs, Daugherty and Levy
pointed out that “quasi-modes” can control the rate
at which an ideal 2D vortex becomes axisymmetric
[5]. Subsequent laboratory experiments have veri-
fied the importance of this mechanism [6,7]. Figure
1a provides an example. We note that in this exper-
iment, the vortex is actually a spinning column of
electrons, in a Penning-Malmberg trap. By coinci-
dence, the electron vortex obeys dynamics that are
isomorphic with the 2D Euler equations.

The experiment begins with an axisymmetric vor-
tex. The unperturbed vorticity and angular veloc-
ity, ζ̄(r) and Ω̄(r), decrease monotonically with ra-
dius r. At t = 0+, an elliptical perturbation is
applied. Then, in the core of the vortex, the el-
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liptical perturbation rotates with a uniform phase-
velocity, and decays exponentially with time. For-
mally, the core vorticity perturbation is given by
ζ ′(r, ϕ, t) ' a(t)Z(r) cos(nϕ− ωt), where Z(r) gives
the radial variation of the wave-amplitude, n = 2,
a(t) = aoe

γt, and γ < 0. Because this wave is sup-
ported by a radial vorticity gradient, it is classified
as a Rossby wave.

The critical radius r∗ of the vortex-Rossby-wave
is defined by the following “resonance condition”

ω/n = Ω̄(r∗), (1)

and generally lies outside the core. In a critical layer
about r∗, the streamlines form cat’s eyes (Fig. 1b).
The flow in the critical layer efficiently stirs vorticity,
and causes ζ ′ to grow there. Because the vorticity
perturbation behaves like a damped wave only in
the core, but grows in a critical layer, it can not be
a damped eigenmode of the vortex. For this reason
it is called, instead, a quasi-mode.

Conservation of wave-activity (pseudo angular-
momentum) explains why stirring of vorticity in the
critical layer damps the core vortex-Rossby-wave [8].
For 2D Euler flow, the total wave-activity is the fol-
lowing quadratic integral of the vorticity perturba-
tion: A = −

∫ ∫

dϕdrr2(ζ ′)2/(dζ̄/dr). The minus
sign guarantees that A is positive, assuming that
dζ̄/dr < 0 for all r > 0.

For brevity, we may ignore nuances and view the
wave activity as having two dynamically relevant
parts; specifically, A ' Acore + Ac−layer, where

Acore ≡ −

∫ 2π

0

∫ rv

0

dϕdrr2 (ζ ′)2

dζ̄/dr
,

Ac−layer ≡ −

∫ 2π

0

∫ r∗+δr

r∗−δr

dϕdrr2 (ζ ′)2

dζ̄/dr
.

(2)

Here, rv is the radius of the vortex core, within
which lives the core vortex-Rossby-wave. In addi-
tion, r∗ − δr > rv. A more precise definition of δr
is not important for this abstract. With the present
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Figure 1: (a) The inviscid axisymmetrization of a 2D
vortex. Time T is in units of 2π/Ω̄(0). (b) Cartoon
of streamlines in a reference frame that co-rotates with
the core vortex-Rossby-wave. The core of the vortex is
shaded.

decomposition, conservation of wave activity has the
form

d

dt
Acore = −

d

dt
Ac−layer. (3)

The growth of (ζ ′)2 in the neighborhood of r∗ causes
Ac−layer to grow. By (3), this must diminish Acore,
and thereby damp the core vortex-Rossby-wave.

Further (linear) analysis of (3) leads to an equa-
tion for the wave amplitude of the form da/dt = γa,
where

γ = c
dζ̄

dr
(r∗), (4)

and c is a positive factor that depends on the wave-
number n, and the specific form of ζ̄. Equation (4)
demonstrates that the decay rate of a quasi-mode in-
creases with the vorticity gradient at the critical ra-
dius, and is zero if that gradient is zero. The analysis
used to derive (4) assumes that γ/ω << 1. A more
general procedure for calculating the decay rate of a
quasi-mode, based on a Laplace transform solution
to the initial value problem, is outlined in Briggs,
Daugherty and Levy [5].

Three-dimensional symmetrization can also occur
by the decay of a quasi-mode. Figure 2 shows
a numerical simulation in which a tilted quasi-
geostrophic (QG) vortex becomes vertically aligned

by this process [4,8]. At t = 0+, the potential vor-
ticity (PV) is misaligned, giving the vortex a tilt. In
the core of the vortex, the tilt precesses with a uni-
form phase-velocity, and decays exponentially with
time. Formally, the core PV perturbation is given by
q′(r, ϕ, z, t) ' aoe

γtQ(r) cos(mπz/H) cos(nϕ − ωt),
where (m,n) = (1, 1), γ < 0, H is the vortex
height, and Q(r) accounts for the radial variation of
the wave-amplitude. This 3D vortex-Rossby-wave
is damped by the stirring of PV in its critical
layer. Analogous to (4), the decay rate γ is pro-
portional to the PV gradient at the critical radius r∗.

3 Recent Results

At this conference, we will report recent progress
on the theory of quasi-modes, and further illustrate
their importance to vortex symmetrization. Specif-
ically, we will consider the 3D quasi-modes of a
barotropic vortex on the f -plane, whose vertical vor-
ticity ζ̄ decreases monotonically with r. We will
assume that the ambient buoyancy frequency N is
constant, and that vertical motion is inhibited at the
top (z = H) and bottom (z = 0) boundaries. We
may characterize this basic state, in part, with two
dimensionless parameters: the central Rossby num-
ber,

Ro ≡
ζ̄(0)

f
, (5)

and the normalized, ambient, internal Rossby defor-
mation radius

lR
rv

≡
NH

π|f |rv
. (6)

Here, f is the constant Coriolis parameter, and rv

is the radial length-scale of the vortex core.

3.1 Extension to Rapidly Rotating Vortices

Previously, we presented the QG theory of 3D
quasi-modes [8]. QG theory requires that the Rossby
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Figure 2: The conservative vertical alignment of a
(quasi-geostrophic) vortex. Time T is in units of
2π/Ω̄(0).
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Figure 3: Contour plots of the normalized decay rate,
|γ/ζ̄(0)|, of the (m, n) = (1, 1) quasi-mode of a Gaus-
sian cyclone (a), and a Rankine-with-skirt cyclone (b).
The decay rates are here calculated using the asymmet-
ric balance approximation. The printed numbers inside
the graphs are the decay rates at (Ro, lR/rv) = (.1, 1)
and (2.93, .293). Darker shades represent smaller decay
rates.

number is small, i.e., that Ro << 1. Here, we extend
the theory to rapidly rotating vortices, which can
have Rossby numbers greater than unity. We first
generalize in the context of the mathematically ele-
gant, asymmetric balance (AB) model [9,10]. This
model formally requires that

D2
N ≡

[ω − nΩ̄(r)]2

N2
<< 1, (7)

and furthermore that

D2
I ≡

[ω − nΩ̄(r)]2

η̄(r)ξ̄(r)
<< 1, (8)

where η̄ ≡ f + ζ̄(r) is the absolute vertical vortic-
ity and ξ̄(r) ≡ f + 2Ω̄(r) is the modified Coriolis
parameter. The condition D2

N << 1 amounts to hy-
drostatic balance. The condition D2

I << 1 can be
satisfied even if Ro >

∼ 1, since the numerator is the
square of the Doppler shifted quasi-mode frequency.

As in QG theory, AB theory predicts that the de-
cay rate γ of a quasi-mode of a barotropic vortex is
proportional to the value of dζ̄/dr at the critical ra-
dius r∗. However, the decay rate (normalized to the
central vorticity) can either increase or decrease with
the parameters Ro and lR, depending on the global
form of ζ̄. To illustrate this point, we compare the
(m,n) = (1, 1) quasi-modes of a Gaussian cyclone
and a Rankine-with-skirt (RWS) cyclone. Here, m
and n are the vertical and azimuthal wave-numbers.
Decay of the (1, 1) quasi-mode corresponds to the
alignment of a tilted vortex.

The vertical vorticity of a Gaussian cyclone is
given by

ζ̄ = Zoe
−9r2/2r2

v , (9)
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Figure 4: Asymmetry (tilt or ellipticity) versus time
for a selection of numerical and laboratory experiments,
covering a broad region of parameter space. All asym-
metries are normalized to their initial values. See Table
1 for a full description of the data.

where Zo is the central vorticity. The vertical vor-
ticity of an RWS cyclone is given by

ζ̄ '











Zo r < rv

Zoε(1 −
r

αrv
) rv < r < αrv

0 r > αrv,

(10)

where ε << 1 and α > 1. This vortex has a uniform
core, of radius rv, and an outer skirt of relatively
weak vorticity, that decreases linearly with radius
to zero at r = αrv.

Figure 3a is a contour plot of the normalized
decay rate |γ/ζ̄(0)| of the (1, 1) quasi-mode of a
Gaussian cyclone, in a small region of the Ro-lR
parameter space. In this case, the normalized decay
rate increases as the Rossby number Ro increases,
and as the deformation radius lR decreases. Figure
3b is a similar plot for the (1, 1) quasi-mode of an
RWS cyclone, with ε = 0.16 and α = 8/3. Unlike
before, the normalized decay rate decreases as the
Rossby number increases, and as the deformation
radius decreases.

3.2 Limitation of Balance

One potential draw-back of all “balance” models,
including QG and AB theory, is their neglect of
inertia-buoyancy (IB) waves. At Rossby numbers
greater than unity, the vortex-Rossby-wave, com-
posing the core component of a quasi-mode, can
resonantly excite an outward propagating IB wave.
If the magnitude of dζ̄/dr at r∗ is above a threshold,
this excitation merely retards the damping of the
vortex-Rossby-wave. In this case, AB theory can



symbol model vortex-type Ro lR/rv (m,n) |γth/ζ̄(0)| ref.

◦ QG nonlinear Gaussian 0 0.28 (1,1) .048 [8]
5 AB linear “hurricane” 234 34.3 (1,1) .0038 [10]
4 PE linear Gaussian 0.25 0.75 (1,1) .0023 −
� PE linear Gaussian 2.0 0.75 (1,1) .0092 −
+ PE linear RWS (ε = .16, α = 2) 10 1.0 (1,2) .0051 −
× 2D e− plasma experimental − − (0,2) .030 [7]

TABLE 1: Legend for data in Fig. 4. The last column provides references for some of these results.

still provide a good approximation for the decay
rate. However, if the magnitude of dζ̄/dr at r∗ is
below the threshold, the IB wave will cause the
core vortex-Rossby-wave to grow, and the vortex to
become increasingly asymmetric. To accurately ac-
count for the influence of IB waves, the first author
has recently generalized the theory of quasi-modes
to a primitive equation (PE) model, which assumes
only hydrostatic balance (i.e., D2

N << 1).

3.3 Quasi-Modes “Everywhere”

We conclude by comparing a set of observed vor-
tex symmetrization rates to theoretical quasi-mode
decay rates. The observations are primarily from a
sample of numerical simulations that span a broad
region of parameter space, and are summarized in
Table 1. The numerical simulations are of 3 types:
a nonlinear QG simulation, a linearized AB sim-
ulation, and a linearized PE simulation. In each
case, a barotropic vortex is either tilted or given
a z-dependent elliptical deformation. Specifically,
the initial PV perturbation is of the form q′ ∝
rn−1(dζ̄/dr) cos(mπz/H) cos(nϕ), where m = 1 and
n = 1 or 2. Further details of the initial perturba-
tions are discussed in Refs. [8,10]. In time, all of the
perturbations decay, and the vortices symmetrize.

Figure 4 is a log-linear plot of the asymmetry
(tilt or ellipticity) versus time, for all simulations.
The asymmetry is measured by the magnitude of
the asymmetric pressure (geopotential) perturba-
tion at a fixed radius in the vortex core. Time
is multiplied by the theoretical decay rate γth of
the least damped quasi-mode, with wave-numbers
(m,n) matching those of the initial perturbation.
With this scaling, all curves should have the same
slope, provided that symmetrization occurs by decay
of the quasi-mode. The theoretical slope is indicated
by a dashed line in the figure. Evidently, the sim-
ulations are in good agreement with theory, after
relatively short initial adjustments.

Figure 4 also compares theory to the laboratory
experiment of Fig. 1, in which a 2D elliptical vortex

tends toward an axisymmetric state. As indicated
by this graph, the symmetrization rate of the exper-
imental vortex is equal to the theoretical decay rate
of its n = 2 quasi-mode. We note that here, the
ellipticity is measured by the quadrupole moment of
the vorticity perturbation.

In summary, quasi-modes can play an impor-
tant role in regulating the rate at which a geo-
physical vortex symmetrizes. We have extended
the theory of 3D quasi-modes to rapidly rotat-
ing barotropic vortices, using both an asymmet-
ric balance model, and a primitive equation model.
According to linear theory, the decay rate γ
of a quasi-mode increases with the radial gradi-
ent of ζ̄ at the critical radius r∗ of that quasi-
mode. The normalized decay rate |γ/ζ̄(0)| can
either increase or decrease with the parameters
Ro and lR, depending on the specific form of ζ̄.
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