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1. Introduction 

Because local baroclinic instability (LBI) plays a central role in 
a variety of atmospheric phenomena, including regional 
cyclogenesis and atmospheric blocking, it has been the focus of 
much research over the past two decades.  Theoretical studies of 
nonlinear LBI have been relatively few, however.  Those studies that 
have examined LBI have traditionally considered the localization of 
the disturbance to occur from either a zonally varying background 
flow or from an appropriately chosen initial condition.  Few, if any, 
studies have combined these two localization mechanisms.  Here we 
combine these two mechanisms by examining the finite amplitude 
baroclinic instability properties of solitary waves (SWs) propagating 
in zonally varying flows having isolated regions of instability.   

 
2. Model and Analytical Development 

We consider a two-layer fluid confined to a mid-latitude β-plane 
channel of infinite zonal extent that is bounded above and below by 
horizontal, rigid boundaries.  We consider a zonally varying 
background flow that consists of two parts:  (i) an O(1) meridionally 
sheared, zonally uniform part, and (ii) a small, meridionally sheared, 
zonally varying part.  The O(1) part of the background flow is chosen 
marginally stable with respect to the necessary condition for linear 
instability (Pedlosky, 1987).  Using a multiple-scale analysis, an 
amplitude equation is obtained analytically for a disturbance field 
that is superimposed on the zonally varying background flow.  The 
amplitude equation takes the form of a variable coefficient 
Boussinesq equation, viz. 
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This amplitude equation possesses SW solutions.  For zonally 
uniform background flows, (2.1) reduces to the constant coefficient 
Boussinesq equation obtained by Helfrich and Pedlosky (1993). 

In (2.1) the dispersion term mdAXXX and nonlinear term mnAAX 
must balance in order to support SWs.  The term mp

2(X)AX 
describes the propagation speed of linear long-waves, the speed 
being mp(X).  The term mg(X)A affects both the translation speed 
and amplitude of the long-waves. 
 
3. Conservation Laws 

A sequence of conservation laws are obtained by 
differentiating (2.1) k times (k = 0,1,2,3,…), then multiplying by Xk, 
and integrating over X and T to obtain 
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Consider, for example, the case k = 0, which shows that the 
integrated amplitude of the disturbance will grow at most linearly with 

time (T).  However, because we are interested in isolated jet flows, 
we assume that at T = 0 the disturbance is situated far upstream of 
the zonal variation in the flow.  Because the background flow in this 
region is (marginally) stable, the initial time tendency of the 
integrated amplitude must vanish.  Thus the integrated amplitude of 
the disturbance must be conserved after propagating through a 
zonally isolated jet flow. 
  
4. Numerical Experiments 

Equation (2.1) was solved numerically using a pseudo-spectral 
method with the 3rd order Adams-Bashforth scheme in time; the time 
increment is 0.0005.  The spectral expansion was truncated at 128 
Fourier modes and the nonlinear term was evaluated using the 
transform method.  The zonally infinite domain is modeled by adding 
a damping region spanning ten grid points closest to the eastern 
boundary. The zonally varying background flow, i.e. the zonally 
varying jet, is Gaussian in form.       
 

a. Linear Analysis 
 

To determine the dynamics and structural properties of small-
amplitude waves, we linearize and then solve (2.1) as an initial-value 
problem with small amplitude (A<10-2) random noise as an initial 
condition.  The O(1) background flow is marginally stable.     

We find that the linearized, variable-coefficient Boussinesq 
equation supports an unstable normal mode when either md < 0 or 
mp2 < 0.  When md > 0 and mp2 < 0, for example, the instability 
properties are characterized by the following:  

i. a growth rate that increases as md decreases, 
ii. a growth rate that increases as the jet length increases, 
iii. growing modes that are oscillatory in space and trapped 

to the unstable region.  
For marginally stable zonally varying jets, for which 

[0<mp2<<O(1)], an unexpected, powerful transient (non-modal) 
growth emerges.  This transient growth is strongest when mg=O(1) 
and md<<O(1).  Depending on the sign and form of mg, two types of 
waves emerge: 1) waves trapped to the jet region (Fig. 1), and 2) 
waves repelled from the jet region (not shown).          
 

b. Nonlinear Analysis 
 

We briefly describe two numerical experiments that highlight 
the uniqueness and importance of the variable-coefficient 
Boussinesq equation (2.1).  In the first experiment we examine the 
effects of nonlinearity on the linear transient growth shown in Figure 
1.  In the second experiment we place a SW far upstream of the 
isolated jet flow and examine its space-time evolution. 
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Figure 1.  The transient development of an initial field of small amplitude 
random noise to trapped linear waves.  The isolated jet flow is everywhere 
marginally stable.     

The effects of nonlinearity on the transient growth shown in 
figure 1 are obtained by integrating (2.1) forward in time starting from 
a small field of random noise.  The initial field grows super-
exponentially into a coherent structure in 43 time units.  Note that the 
transient disturbance shown in Figure 1 spans 100 time units. This 
coherent structure is similar in form to the bottom panel of figure 2.  
Recall, the O(1) background flow in this case is marginally stable; 
the nonlinear instability that results is due to the relatively large 
amplitude that occurs after the early, large transient growth of the 
disturbance.     

In the second experiment we choose a flow that is again 
marginally stable.  Figure 2 shows a SW that propagates toward the 
jet and grows on the upstream side of the jet.  This growth is super- 
exponential, resulting in a rapid increase in amplitude as well as a 
decrease in horizontal scale.  The disturbance field is characterized 
by the development of a weak “trough” upstream and downstream of 
the SW.  These structural changes can be explained by considering 
the conservation of mass of the SW (see Hodyss and Nathan 2003).          
 
5. Conclusions 

The finite amplitude dynamics of baroclinic disturbances 
embedded in a zonally varying, marginally stable jet flow is 
examined.  The governing equation for the disturbance field is a 
variable coefficient Bousinesq equation, which possesses a rich 
spectrum of behaviors.   

A transient stability analysis shows that two types of transient 
disturbances emerge from a field of small amplitude random noise.  
One disturbance type remains “trapped” inside the jet region, and 
the other is “repelled” from the jet region.   

Whether the zonally isolated jet flow is stable or unstable, the 
nonlinearity can eventually organize the initial small-amplitude 
random noise into a super-exponentially growing coherent structure.  
Under certain conditions, this super-exponential rate can also occur 
for a SW that propagates into an isolated jet flow.  In the Boussinesq 
equation (2.1), nonlinearity does not equilibrate the disturbance; the 
flow is nonlinearly unstable and becomes infinite in a finite time.  

These results apply to a wide range of atmospheric 
phenomenon, including large-scale isolated anomalies in the form of 
intense jets and split-flow blocks.  For example, we have found that 
combined linear/nonlinear instability is a potentially important 
mechanism for forming and maintaining isolated anomalies.   

The development of large amplitude isolated anomalies from 
small-amplitude random noise can occur in two ways.  First, an 
isolated unstable jet flow can support a growing normal mode that 
becomes large enough to excite a nonlinear instability, such as that 
described above.  Second, a stable isolated jet flow may support 
transient (non-modal) growth that is strong enough to excite the 
nonlinear instability of the wave.   

If stable finite-amplitude disturbances are already present in 
the fluid, then the isolated jet flow can initiate nonlinear instability.   

This ongoing work is currently focusing on determining the 
specific characteristics of the background flow that control the 
formation of the coherent structures and nonlinear instability.  The 
robustness of the above solutions is being explored using a fully 
nonlinear model.      
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Figure 2.  Shown here is the propagation of a SW towards a locally stable, 
zonally isolated jet.  The jet center is denoted by the vertical line.   
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