16.2 CHARACTERIZING TRANSPORT TIMESCALES BETWEEN THE SURFACE MIXED LAYER
AND THE DEEP OCEAN WITH AN OGCM AND ITS ADJOINT.

Francois Primeau *
Department of Earth System Science, Univeristy of California, Irvine, CA

1. INTRODUCTION

The interaction of the ocean with the rest of the earth sys-
tem happens primarily at the sea-surface through air-sea
fluxes that imprint on fluid parcels the current physical
or chemical state of the atmosphere. When fluid parcels
are transported below the surface, they become shielded
from the atmosphere until they resurface at a later time
to communicate past physical or chemical climate con-
ditions to the atmosphere. The delay between succes-
sive visits to the surface mixed layer imparts to the cli-
mate system an important long-term memory. Since the
properties of fluid parcels get reset by air-sea interactions
during each visit to the surface mixed layer, the “memory”
of a fluid parcel does not extend to times earlier than its
last contact with the surface layer, nor does it persist be-
yond its next contact with the surface layer. In light of this
fact, the distribution of times for fluid parcels to have had
their last contact with the atmosphere as well as the dis-
tribution of times when fluid parcels will have their first (or
next) contact with the atmosphere provide a useful de-
scription of the transport characteristic of ocean models.
Our approach is to characterize the transport characteris-
tics using transit-time-distribution functions as described
in Holzer and Hall (2000).

1.1 Probability For Transport From One Grid Box To
Another

As a preliminary step, we seek to understand in a prob-
abilistic sense where fluid parcels come from and where
they are going. More precisely we seek answers to the
following two questions (see figure 1):

Fi1G. 1: Schematic diagram showing p;; (¢, to), the prob-
ability that a fluid parcel in box ¢ at time ¢ came from grid-
box j at an earlier time to and p;;(t1,t), the probability
that a fluid parcel in box ¢ at time ¢ ends up in grid-box j
at a later time ¢;.
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1. Where do fluid parcels come from? What is the prob-
ability that a fluid parcel located in grid-box ¢ at time
t was transported from grid-box j during the preced-
ing time interval from ¢, to ¢? In other words we want
to determine

DPx(to) (J [x(t) = 2) = pij(t,to) witht > to. (1)

2. Where are fluid parcels going? What is the proba-
bility that a fluid parcel located in grid-box 7 at time
t will be transported to grid-box j during the time in-
terval between t and ¢;? In other words we want to
determine

px(tl)(j |x(t) = l) = pij (t,t1) with¢; > ¢t. (2)

In the absence of sources or sinks, the advection-
diffusion equation describing the transport of tracers in
the ocean is

%—3+V-(uC+KVC):0 (©)]
where u is the fluid velocity field and K is the diffusion ten-
sor. For a numerical ocean model, the tracer distribution,
c(t), can then be described with an n dimensional vec-
tor whose elements are the tracer concentration in each
grid-box of volume w;. For the discrete model, the time
evolution of an initial tracer distribution,c(to), is given by

c(t) = P(t,to)c(to) (4)

where P(t,to) is the state transition matrix (Padulo and
Arbib 1974) given by the solution to

ip(t,to) + T(t)P(t,to)

dt
P(to,to)

0 (5)
I. (6)

In equation (5), T'(t) is the discrete advection-diffusion
transport operator written as an n x n matrix and I is
the n-dimensional identity matrix. The ith row of P(t, to)
tells us in what proportion the fluid from each model grid-
box at time to gets mixed to form the fluid mixture in
grid box ¢ at time ¢t. The rows of P(t,to) can thus be
thought of as probability mass functions of the location,
x, at some time to of fluid parcels conditioned on their
position at some later time ¢. In other words, the ijth el-
ement of P(t,t0) is ps;(t,to) that appears in (1). Thus
for the case where ¢t > to, the rows of P(t,to) answers
the question of where fluid parcels come from. If we in-
terchange the time arguments of P such that the first ar-
gument is smaller than the second we get P(to,t) with



t > to which should give us the answer the question of
where fluid parcels are going. Applying Bayes’ theorem,
P(A|B) = P(B|A)P(A)/P(B), to p;j(to,t) with t > to
we get

pij (to, ) = px(ry (J|x(to) = 4) = o
P i) = D =i, @)

where the last equality follows from the fact that the un-
conditional probabilities are given by the ratio of the grid
box volume to the total ocean volume, i.e. py(j) =
wj/z;::l wg. In matrix form, the elements p;;(to,t) of
P(to,t) satisfy the following matrix relationship

P(to,t) = W™ P(t,t0)" W = P*(t,to), 9)

showing that P(t,to) is equal to its time reversed adjoint.
The fundamental state transition matrix can thus be used
to answer in a probabilistic sense the question of where
fluid parcels come from and where they are going.

2. First and Last Passage Time Distributions

In this section we derive equations for comput-
ing so called first-passage time distribution functions
(Stratonovich 1963) as well as last-passage time distri-
bution functions. These are equivalent to the interior-
to-surface and surface-to-interior transit time distribution
functions in the terminology used by Holzer and Hall
(2000).

As mentioned in the introduction, the “memory” of
fluid parcels can be characterized by the distribution of
times when fluid parcels made their last contact with the
surface layer and when they will make their next contact
with the surface layer. Information about such times are
not easily obtained from P(t,t0). What we need instead
is a new state-transition probability matrix, P°(t, to), that
ignores fluid parcels after they enter the surface layer.
In section 1.1 we obtained P(t, o) from equation (5) to-
gether with the initial condition (6) by tracking n sepa-
rate tracers each of which describes the evolution of fluid
parcels that were “tagged” in a separate grid-box at time
to. The new state-transition probability matrix, P°(t,to)
can be obtained by solving equations similar to (5) and
(6) except that fluid parcels should get “untagged” when
they reach the surface layer. To obtain the new equation
we partition the transport equation into interior, (i), and
surface, (s), grid-boxes

da|pF P _ _|Ti T Py P (10)
dat | P§ Pg | Ta T P Pg

and then “untag” fluid parcels in the surface layer by set-
ting Py = 0 and Pg = 0, to get an equation for the interior

boxes only
~Ti(t) P (£, to)
} . (11)

Py (to,t0) = T

%-Piio(ta tO)

For the case where t > to the ijth element of P (¢, t0)
can be interpreted as the probability that a fluid parcel
in grid-box ¢ at time ¢ was transported from grid-box j
at time to without having made contact with the surface
layer during the preceding time interval of length ¢t — ¢o
leading up to ¢. If however, t < to, then the i5th element of
Py (t,t0) gives the probability that a fluid parcel in grid box
7 at time ¢ will be transported to grid box jwithout making
contact with the surface layer during the time interval of
length to — t immediately following ¢.

Equation (11) allows us to compute P°(t, to) for ¢t >
to, i.e. only the case where the first time argument ¢ is
larger than the second. To compute P°(to,t) where the
first time argument is smaller than the second we use
Bayes’ Theorem to get

PY*(t,to) = W, "B (t,to)Wi = PY(to,t)  (12)

From now on we will assume that tg < ¢.

Summing p;(to,t) over all possible grid-boxes
where the fluid parcel might end up at time ¢ we obtain
the probability that a fluid parcel located in grid-box ¢ at
time to will not make contact with the surface layer during
the time interval of length ¢t — ¢, immediately following ¢,

o o wj
si(to,t) = E p7;(to, t) = E p7i(t, to)#- (13)
i i ’

On the other hand, summing pf;(t,to) over all pos-
sible grid-boxes where the fluid might have originated at
time to we obtain the probability that a fluid parcel located
in grid-box ¢ at time ¢ did not make contact with the sur-
face layer during the time interval of length ¢ — ¢, leading
up to time ¢,

si(t,to) = Y p(t, o). (14)
J

We can rewrite equations (13) and (14) in matrix form
with the components of s; organized into a row vector, s,

Eq. (13) = s(to,t) = 1T WiP2 (¢, to)W; (15)

and

Eq. (14) = s(t,t0) = (P (t,t0)1)". (16)
Initially s(to,t0) = 1. As we let ¢ extend further and fur-
ther into the future in equation (15) or as we let ¢o extend
further and further into the past in equation (16) more and
more fluid parcel will make contact with the surface layer.
In the limit ¢ — oo in equation (15) or in the limit where
to — —oo in equation(16) all fluid parcels will have made
contact with the surface layer and

si(to, 00) = s;(—00,t) = 0. 17)

The probability that a fluid parcel in grid box 7 at time to

will be in the surface layer at some point during the time
interval (to, t) is then

Si(to,to) — Si(to,t) =1- Si(to,t), (18)

and the probability that a fluid parcel in grid box 7 at time
t was in the surface layer at some point during the time
interval (to, t) is

si(t,t) — si(t,t0) =1 — s5(t, o). (19)



Differentiating (18) with respect to ¢, we obtain the proba-
bility density (per unit time) that a fluid parcel in grid-box ¢
at time to will make its first contact with the surface layer
at time ¢. Similarly, differentiating equation (19) with re-
spect to ¢ we obtain the probability density (per unit time)
that a fluid parcel in grid-box ¢ at time £ made its last con-
tact with the surface layer at time ¢o. Thus the distribution
of first passage times is

ft|x(to) =1) = — i(to,t) =

E:m%““
and the distribution of last passage times is

Zat Pl (8, o).

(21)
In vector form, equation (20) can be written as follows

6_
(20)

a Sl(t to

Fltolx(t) = i) = —

E(to,1) = — s (10,) (22)
613.?('5 tO) -1
1W(—7§—) W (23)
and (21) can be written as
£(t, to) = —isT(t to) (24)
y0) — ato ) L0
9 o

0% T
- _ (ITWi L(t’to)wil) (26)
Oto

where the ith component of f(to,t) is f(¢|x(¢o) = ¢) and
the ¢th component of £(¢,t0) is f(to|x(t) = 7). In equa-
tion, (26) we have made use of (12) to replace P°(t,to)
with P°*(¢,t0) since we need to compute the derivative
with respect to the second time argument and as we will
see in the next section we can use the adjoint equation
to compute P°*(t,to) as a function of its second time
argument whereas equation (11) allows us to compute
P°(t,t0) only as a function of its first time argument.

2.0.1 ADJOINT TRANSPORT EQUATION

To derive the adjoint equation we first note that fluid
parcels that have not made contact with the surface layer
during the time interval from to to ¢; must be in one and
only one grid-box at an intermediate time ¢ between to
and t;. Consequently, the conditional probabilities given
by the elements of Py (t,to) must satisfy the following
condition

Dx(to) (F]x(t1) =14) = (27)
D ey (Blx(t1) = Do) (ilx(t) = k); (28)
k€Ei

which can be expressed in words as follows, the proba-
bility of being transported from grid-box j to grid-box i is
equal to the sum of the probabilities of being transported

first from grid-box j to an intermediate grid-box k& and then
from grid-box & to grid-box i for each possible intermedi-
ate grid-box not in the surface layer (see figure 2).

Fj)k(to,t) riJk(tl,t)

ty t t,

FIG. 2: Schematic diagram showing how the probability
pij(t1, to), that a fluid parcel going from grid box j to grid
box ¢ during the time interval from ¢o to ¢; is equal to the
sum over all k of going first from j at time ¢, to k at time ¢
and then from k at time ¢ to 4 at time ¢;.

In matrix form this gives
B (t1,t0) = B (t1,t) B (¢, o). (29)
Differentiating equation (29) with respect to ¢ we get

OF? (t1,t) OR?(t,to)
ot ot
and then using equation (11) to eliminate the time deriva-

tive in the second term on the right hand side of (30) we
get

0= -Puo(tatO) + -Puo (tla t) (30)

_ a-Piio(tl: t)
B ot

Finally, pre-multiplying equation (31) by the diagonal ma-
trix W;, with the interior grid-box volumes w; down the
main diagonal and post-multiplying by P~ (t,t0)W, !
and taking the transpose we get

B?(t,to) — B (b1, ) Ti(8) B (8, 80). (31)

T

0= M/i—l WW _ VVi_lTT(t)VI/iVVi_IPT(tl,t)W,
(32)

which we can rewrite as
&P (11,1) =TV (B (51,1), (33

where

Ti(t) = W ()W, (34)
Pi(ti,t) = W,'B (ti,t)Wi. (35)

Equation (33) is the adjoint tracer transport equation.
Since equation (29) is valid only for t1 > ¢, equation (33)
should be integrated back wards in time starting from the
“final” condition

P*(t1,t1) = 1. (36)



The advantage of equation (33) is that it can be used to
solved for Py (t,to) as a function of the second time ar-
gument as is needed to compute the distribution of last
passage time from the surface using equation (26).

3. Steady Transport Operator

For the special case where the transport operator is in-
dependent of time, expressions (23) and (26) for the
first and last passage time distributions simplify consid-
erably because,P2(t, to) becomes a function of only the
time difference between t and ¢to. We can then write,
PY(t,t0) = P(7) and P (to,t) = PY(—). Property (12)
obtained from Bayes’ theorem then reduces to

B ()= (WiR@wW ) =P @)

Equation (15), for the probability that a fluid parcel will
not make contact with the surface layer in the next time
interval of length = = ¢ — ¢ then reduces to

s(—7) = 1"WP (W' = (P*(n)1)",  (38)

and the probability density for the first passage time to the
surface layer reduces to

d
f(—7) = ——s"(-7), (39)
where s (1) is obtained by solving
d¢T(_r) = TreT(—
d-rs S(T(G; _ 1||s ( T) } (40)

Equation (16) for the probability that a fluid parcel did not
make contact with the surface layer in the previous time
interval of length = reduces to

s(r) = (P°(1)1)", (41)

and the probability density for the last passage time to the
surface layer reduces to

f(r) = —%ST(T) (42)
where s(7) is obtained by solving
) e

The great computational advantage of equations (40) and
(43) is that only two single-tracer simulations are needed
(one with the forward model and one with the adjoint
model) in order to obtain the full distribution of first and
last passage times for every interior grid-box in the model.

3.1 Moments of the First and Last Passage Time Dis-
tributions

For the case where the transport operator is independent
of time, the moments of the first and last passage time
distributions can be obtained recursively by inverting the
transport operator without having to time-step the trans-
port equation.

As a first step to obtaining the recursive formula for
the moments, we first establish the normalization condi-
tion for the first passage time distribution

/ f(—r)dr = —sT(—oo) + sT(O) =1. (44)
0

Multiplying equation (39) by ™ *!, and integrating with re-
spect to 7 from 0 to oo using integration by parts gives
<" (—1) >= / "I (—r)dr  (45)
0
=(n+1)< TnST(—T) > (46)

Similarly, multiplying the top equation in (40) by =™ and
integrating with respect to = from 0 to co using integration
by parts gives

—n< TnflsT(—T) >=T < TnST(—T) > 47
Equations (47) and (46) can then be combined to give
T < " (—7) >= —(n+1) < 7"f(-7) >  (48)

Setting n = 0 and using (44) we can obtain the mean
first-passage time by directly inverting the adjoint trans-
port operator

< 7f(—71) >= —(T}) "1 (49)

The variance can then be obtained by settingn = 1 in
(48) and solving

< T2f(—7') >= —2(Tii*)_1 < 7f(-7) >, (50)

and standard deviation of the distribution

std = \/< T2(—7) > — < 7f(—7) >2 (51)

The other moments can be obtained recursively.
For the moments of the last passage times a similar
approach yields the following recursive formula

Ti < 7"PH(7) >= (n+1) < 7"f(7) >, (52)

in which one inverts the forward transport operator to ob-
tain the moments.

4. Application To An OGCM

In this section we apply the theory to the time-averaged
transport operator of a 3-dimensional global ocean gen-
eral circulation. We use a version of the ocean compo-
nent of the Canadian Centre for Climate Modelling and
Analysis climate model (NCOM). The model has 29 lev-
els in the vertical ranging in thickness from 50 meters
near the surface down to 300 meters near the bottom.
The horizontal resolution has 48 grid-points meridionally
and 96 grid-points zonally for an approximate resolution
of 3.75° x 3.75°. The KPP (Large et al. 1994) vertical
mixing scheme as well as the GM (Gent and McWilliams
1999) isopycnal mixing scheme are used. Tracers are ad-
vected using a second order centered difference scheme.



The dynamical model is forced by a prescribed monthly
freshwater and heat fluxes obtained as output from the at-
mospheric component of the climate model together with
a restoring to observed surface temperature with a 30 day
timescale and to observed surface salinity with a 180 day
timescale.

The model was spun-up for over 8000 years and the
flow field and the diffusion tensor fields were averaged
over a period of 5 years at the end of the simulation.
These time averaged fields were then used to construct
the time averaged advection-diffusion transport operator.

In figure 4 the mean last-passage time from the sur-
face layer and the mean first-passage time to the surface
layer are shown for a depth of 2615 m . The presence
of deep water formation in the North Atlantic and its ab-
sence in the North Pacific are apparent in figure 4 by the
much older water in the North Pacific compared to the
North Atlantic. Also apparent in the North Atlantic is the
presence of a deep western boundary current carrying
young water southward.
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FiG. 3: Mean last-passage time from the surface layer
(upper panel). Mean first-passage time to the surface
layer (lower panel).

The upper panels of figure 4 show vertical cross sec-
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FiIG. 4: Mean and standard deviation of last-passage
time from the surface layer (top 2 panels). Mean and
standard deviation of first-passage time to the surface
layer (bottom 2 panels).



tions of the mean last-passage time to the surface in the
Atlantic Ocean at 30W, as well as the standard deviation
of the distribution. The lower panels of figure 4 show the
same cross sections for the mean first-passage time to
the surface layer.
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FiG. 5: Global inventory function, K(t). K(t)dt gives
the fraction of the total ocean volume that was ventilated
between times t and ¢t +dt in the past. The top panelillus-
trates the square-root scaling appropriate for small ¢, and
the bottom panel illustrates the exponential decay scale
appropriate for large ¢.

Surface waters are generally younger deep waters and
the distribution for the deeper waters is generally broader
except in the polar regions where the distributions are
younger with smaller standard deviations.

4.0.1 GLOBAL INVENTORY FUNCTION

The volume integral, K(t) of the last-passage time distri-
bution

K(t) =1"Wf(t) (53)

gives a global inventory of when fluid parcels made their
last contact with the surface layer. Figure 4 shows a plot
of the global inventory function. For short times, K(t)
scales as t~!/2. Such a scaling is consistent with the
dominance of the diffusive terms for short times. More
surprising is that the ¢~/2 scaling persists out to ap-
proximately 900 years (figure 4 upper panel). For large
times, K(t) scales as e!/™ where 1/7; is the lowest
eigenvalue of the transport operator. The time scale
1/(1/m — 1/tau2) = 918 years (where 7, = 797 and

T2 = 427), associated with the difference between the two
lowest eigenmodes gives a rough estimate of the transi-
tion time between the two regimes. The first moment of
K(t) is 658 years and the standard deviation of K (t) is
360 years.

5. Discussion

The concept of age and age distribution is becoming a fa-
miliar concept in oceanography because of its importance
for understanding the ventilation properties of the ocean
(e.g. England 1995, Hall and Haine 2002). The distri-
bution of first-passage times to the surface has received
much less attention, but it also characterizes oceanic
transport. It may also have application to the anthro-
pogenic CO2 problem because of current proposals to
inject CO2 captured at the source directly into the deep
ocean — the time-scale for the transport of fluid parcels
from the deep ocean to the surface will determine in part
the efficiency of the deep ocean as a reservoir of anthro-
pogenic carbon.

In this study we have used a direct matrix inversion
of a time-averaged OGCM transport operator to efficiently
compute the first few moments of the first and last pas-
sage time distribution without having to explicitly time step
the model.
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