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1. Introduction

Mountain drag schemes come irotparts. The
first provides the total source or sink of momentum at
theground(the“baseflux”) andthesecondspecifieghe
vertical distritution of forcing. Base flux schemes gen-

with m=N/V_ . It thenfollowsfrom (1) and(2) that,
at the surdce,
ow/dz = —N|k|h. A3)

Thederwative is independentf mG , asis thehorizon-

erally rely on statistical measures of the height, shape tal velocity perturbation associated with This \eloc-

and orientation of the unreseld terrain (e.g., Baines
and Rmer 1990, Lott and Miller 1997, Scinocca and

ity, say V', is completely determined by alecity
potential,x(x, ¥), such thatllx = V'. If we nglect

McFarlane 2000). Here we propose an analytical esti- density \ariations, conseation of mass implies

mate of this dragector We also propose a wecorrec-
tion for nonlinearity at the source, guided by older
schemes that alloa gradual transition between linear
and nonlinear dimensional dragv& (e.g., Pierrehum-
bert1987,Lott andMiller 1997). Here,thetransitionis
based on the kmm range of mountain heights within
the grid cell. Reference to these subgrid topographic

heights further leads to a refinement of the rule for clip-

ping the vave amplitude to the saturatioalue as a
function of height.

2. Linear base flux

Suppose that the topograptan be analyzed into
Fourier amplitudes (k) , wherek = (k, 1) is the hori-
zontal vavenumber We write vukf V k/|K| for the
component of the lge-scale fla, V , along the gradi-
entof theterraincomponentvith wavenumberk . Then
thelinearized boundary condition is

Vo kh(K) (1)

whereW is the transform oW (x,y)=w(x,y,z=0),
the \ertical \elocity component at the sade. Vé
neglect temporal ariations ofV and assume gradual
verticalvariationssuchthat d(|m|~ )/ dz«1 ,where
m is the stationaryertical wavenumber If we also
ignore horizontal ariations of the boyang frequeng,
N, and consider onlyyhirostatic scalek « m, the
WKB approximation for theertical structure is

= W(K)exp(i ngdz'),

W(Kk) =

w(k, ) (2
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0%x = —0w/dz. Then, using (3), we ke
x(k) = —(N/IkI)h(k) The synthesis is

X(xy) = —NJ’J’ |k| ) exp(ik T dkd |

wherex = (x,y). Thus,x is a slightly smoothed
transformation of the terrain height. The spatial-trans-
form equvalent of (4) is

“4)

X(xy) = B acay ©)
The \elocity perturbatiorily produced by each spec-
tral component oh(x, y) is perpendicular to the corre-
sponding phase lines of the topognapind directed
downhill. For physicalconsisteny, it is necessaryo fil-
ter the input topographso as to retain only the scales
that force stationary gviy waves.

The subgrid elocity perturbationv' = X is
independentf theresolhedvelocity V(x, y) . However,
the momentum flux across a horizontal aoef, namely

T(xy) = pwVv', (6)

depends on the reseld wind throughw = V [Tlh.
Let Xo = (No/N)x, whereN, is a representat: con-
stant. Then (6) becomes

T= p N, [pODXO(Dh) ]V (7)

The quantity in braaits, pODxO(Dh) =T, is an outer
productof two-dimensionalectorsthatdepenconly on
the terrain. Subject to our assumptions, it contains all
relevant information about the topograplmncluding
amplitude, ariance and anisotrgp Using angle brack-
ets to denote a grid-ceNarage, we can write



pN
PoNo
for the estimate of drag at a model grid-point.

[T0= gAY (8)

Shown in Fig. 1 is a plot of the linear dragC
overtheWesternHemisphere Theassumedarge-scale

= agmin{ 1, (he/h)> ™"} HZB,
()]

Dy, = ay(1-min{1, (he/R)"*P})

np 1+ [3
HereD, andD,, refer to the ertically propagting
and nonpropagfing parts of the base flux, respeely

wind is purely zonal at -8 m/s in the tropics and 13 m/s anda, anda, are constants. This purely dimensional

in the e<tratrop|cs A constantuoyang frequengy,
Ny = 0. 01s ™, is assumed. The dragwobtained

from (5) usmg distances measured on a spherical sur- Fr>Fr;

face. Ve pre-processed the 1/30gdee topograph
with afilter thatpasse®nly scaleof lessthanaboutl.5
degreesof longitudeandlatitude. Theaveragingis over
the same scale.

3. Nonlinear base flux

We propose towaluate the nonpropatjng drag
by using dimensional analysis and assuming an “oro-
graphic adjustment” process (Pierrehumbert and
Wyman 1985, Pierrehumbert 1987). What fotas a
fairly standardreatmentlongthesdines(e.g., Lott and
Miller 1997), ecept that we will allav for a range of
mountain heights within the grid cell.

We assumehatthetopograply is characterizethy
well-defined features that can be binned into height
ranges with well-defined arealerage. If the moun-
tain height gceeds a certain ordenity thresholdh,
that depends on bot andN, the flav is blocked or
deflectecbelow alevel z = h—h,. Forterrainfeatures
with heights less thah,, the drag is entirely linear and
propagiting. For those greater tham,, it includes a
propagting and a nonpropating contrilution. We
relate the mountain width to elevation abwoe its base
by introducing a paramet: L(z) = Lb(l—z/h)B.

As the flav becomes bload by topograph the
drag lav in the blocled Iayer changes from
D OpNVh ’/L toD DpV (h—hy)/L, whereV and
L are the ambient wind component and length of the
mountain respectrely, in thedirectionof thedrag. The

assumption of orographic adjustment essentially means

thatthedepthof theunblocledflow below thesummitis
limited to a scald, proportional to the internalave
scaleV/N. In other vords, the nondimensional depth
h = h(N/V) of the unblockd layer is set by a urer-
sal thresholdh; = h (N/V), related to the critical
Froude number

With theseas%umptionsthedragcanbeexpressed
in terms ofD = pV~/NL, as follows:

formulation is similar to that of Lott and Miller (1997),
but it limits the propagting drag to a residual when

. Theparamete appearsn D, becausé¢he
vertical cross-section of the obstacle within the béack
layer is reduced by the tapering of the mountain when

B>0.

To integrate (9) wer the grid cell, we need a rela-
tionship betweer andL, . Itisimpractical to use the
full height distritution because whilé. is assumed
constanth is time-dependent. Data analysis suggests
that for heightsxeceeding a certain threshold of around
200 m, we may assume aweEr law,

L/Ly = (h/hy),

wherel,, h, andy are urversal constants. If we can
neglectoverlapsbetweerterrainfeaturesandignoreary
correlationbetweeranisotrofy andmountainheight.the
areal coeragedA of features in the range fromto

h + dh will be proportional tm(h)h dh where
n(h) is the number of features in the ranger this
number we assume anotheiao lav, namely

n(h) = ny(h/h,)™. Theconstants, andh, will not
appeain ary results. Analysisof high-pasgopograply
suggesty = 0.4 over most parts of the earthiand sur-
face.

If wetake V andN constanoverthegrid celland
use the stated assumptions about the mountain height
distribution, we can intgrate (9) with respect to area to
obtain

—e+2)+ H>(V—8—B)D
H(2y —¢) 0 (10)

hyH (y—e+ 1) -H(y-e-B),
(1+PB)H(2y-¢) °

for the arerage drag. Herl8 = pV /NL0 and we
have definedH (o) = [ (hmax) — (hmin)1/ 0t , with the
superscrlpts ord |nd|cat|ng thath is replaced with
eitherh” _mln(h he) orh _max(h he). The abwe
resultfor D, mcludestheeffecgofNregzucmgtheforcmg
areaelementdA by thefactor(h/hc) — toaccountor
the horizontal clippingdf. Lindzen 1988).

’“VH<
[D,0= aghy (y

Ean = a

Clearly (8) is a better linear drag formula than
(10). Oursolepurposén introducingthelatteris to par-



tition thedragbetweerpropa@tingandnonpropagting
components. In &fct, we determin@, by setting

|30 = [DLC andthensubstituting(i0 = 1* evaluated
from (8) and[DO= D* whereD* is the linear limit
of D,. We also allev (8) to determine the direction of
thedrag. In thisway, we find thatthe baseflux, asmod-
ified by the lnlk dimensional analysis, is

[D D (D
0 np
DD* %[

a0= (11)
The nonpropagting part should be applied to the
resohed momentum belo a reference ieel while the
propagting part should be distrited aer the column
according to a leel-by-level determination of ave sat-
uration.

The transition from linear flux to saturation flux
for thetwo extremecase®f hypin/ hmax is shovnin Fig.
2, in which [D [¥D* is graphed as a function of
Nmax/ he withy = 0.4, 3 = 1.0ande = 0.3. Also
shawn is the normalized total drag
(D D0/ D* based on the additional assump-
tion thata,;/a; = 9.0h;. This choice fora; produces
a maximum total drag of approximatep* , which is

a compromise between the maximum drags obtained inThen

two- and three-dimensional nonlinear simulations, as
summarizedby Lott andMiller (1997)andScinoccaand
McFarlane (2000).

4. Level-by-level determination of momentum forc-
ing

To obtain the momentum forcing from
ovV/ot = ..—p 'd @ dz, we need theartical pro-
file E‘r(z)[ Let 8(z) denote theertical particle dis-
placement in a stationary mountaiave and define
h(z) = N&/V,whereN(z) isthebuoyang frequengy
andV(2) is the resoled wind component in the direc-
tion opposite the net drag. é/dlso assume a density
profile p(z) . By defining

U(h, 2) = hy(p/po)V/NL,

a function of both the mountain amplitude and thé-en
ronment at heighz, we can write the inggral of the
propagting part of (10) as

2y +e)uy **

U2y’+e U2y’+spo
max =~ ~“min

D,0=

5 (12)
y' +2 2 B Y-
% %J _U\r/m; + Ukax _UC UBU2E

O Y+2 y-B ‘O

whereU. =min[U,,, max(U,;, U.)] and

Y = y—e&. The quantityp,U" is proportional to the
areally aeraged ertical momentum flux. Therefore,
according to the theorem of Eliassen aath(1960),
the \alue of U associated with a particular feature is
independent of until that part of the disturbance
breaks. W are able to retain this constraint aftexev
breakingbecause¢he saturatediragdoesnotdependn
h. As a consequence, the igttation of the drag with
respect to the terrainvahys rangesver the same inter-
val, U, toU

min max *
If we assume that the horizontal scales of the indi-
vidual features do not change as a resultafelreak-
ing over the source, thevarage flux as a function of
height can be written
(2y +£)Uq(0)" **
N gy PolRi(D) + Ry(2)] , (13)

max min

(D,U= ay

whereUy(z) = U(hy, z) and the flux has been parti-
tioned into unbro&n and bro&n componentsR, and
R, , respectiely, corresponding to the twerms in
parentheses in (13). L&t (z) = min|, {U.(Z)}.

\'\/y'+2 Uy’+2

= ¢ ~ “min
RU - yl +2
' Y -B Y -B (14)
[0e(0)" -V, Ynae =U0c(0) ol 2
R, = B - U, (0)"vV
b 0 y y B c( ) 0 c
whereV. = min[U,,,, max(U,, V.)] . The “satura-

tion profile” (14) specifies o the momentum flux
associated with the full range of terrain features is lim-
|ted by the Iocal saturation flux, proportional to

D = pOU We hare assumed in (14) that the distur-
bance cannotain enegy from the emironment. This
means that the residual qux from the enlcompo-
nents proportionalto pOV will fall below theerviron-
mental saturation wherer U increases witlz.

In Fig. 3, we graphD [ D* to shav the transi-
tion to saturation as a function of height edthe
mountaindor two differentrangesf h andanassumed
ervironmental column described in the caption. The
dashed cum is the local saturatioralue, Dy, .
Momentum anomaly is deposited in the layers where
D, is decreasing, which, in this case, occur jusvabo
the two assumed jets. Theaves tale longest to fully
saturate when the terrain features within grid celly v
most widely in heightfmin/hmax = 0).

The present saturation condition is based on the
component of mean wind in the direction of Hygre-
gatedrag in the grid cell. Ngecting the subgridaria-



tion of drag direction &écts not only the base fluxib

also the wertical flux profile if the ambient wind turns
with height. The latter &ct was analyzed by Shutts
(1995). We arealsoneglectingthe possibility of re-radi-

ation from breaking gions (Bacmeister and Schoeberl

1989).
5. Unsteady esoled flow

Thesteady-statsituationthatwe have analyzeds
thelimit of very shortadwective time scalescomparedo
thetime scaleof thebackgroundlow: V|k| » w, in the
case of a single background frequgno,. The oppo-

site limit V|k| « wy is also easy to analyze (the linear

solution in the general case ivgh by Bell, 1975). In

fact, it produces essentially the same drag formula as in

the steady case.

Thus, if wy » V can proceed from (2ub
with m = —N|k|/,/w0—f for the \ertical wavenum-
ber, wheref is the (slowly varying) Coriolis parameter
We hare excluded nonfadrostatic vaves by assuming
w,« N. Then (3) is replaced by

oW/ dz = B&thD\/

0 / _f2 O
We still have thataw/az =-0ov',
momentum equation implies

0
[+6—+f (-0 0/ = 512
[ot?

we mayoperate:)n (15)with thetransformequvalentof

(15)

and since the

sz , (16)

pd” (f +9°/ to reachp = p(ShIkI_ ik) DV,
whereS= N, /wy—f /000 If w,>|f|, the synthe3|s is
p=-pOx IV, (17)

wherey is definedoy (4) or (5) with S replacingN . In
this casey is not related to the elocity potential for
the flov perturbation.

Thedragis notdueentirelyto theeddymomentum
flux, but is still determined by the saxfe pressure dis-
tribution according to

T = —p'Oh = p[Ox(0h)"V. (18)
Notethat(18)is essentialljthe sameasin thestationary
case (7). This result mayveapplications to small-
scale internal aves generated by semi-diurnal tidal
flowsin theocean.But sincethedragis independentf
frequeny whenw, » f , (18)is somavhatmoregeneral
than simple harmonic motion.
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Fig. 1. The drag due to stationary linear mountain
waves wer North and South America and western Ang
arctica. The assumed saec€ wind is purely zonal at -75
m/s in the tropics and 13 m/s eldeere. The assumed 215
surface static stability and density are .01and 1.0
kg/m®, respectiely. The arrav belav the plot shws
the scale for 2 &
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Fig. 2. The normalized propating dragD,,, and
total drag as a function of normalized maximum
mountain height for tew extreme cases.
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Fig. 3. The normalized propating drag as a function

of height for the tw extreme cases. The assumed wind
profile (shevn at right) has jets of 38 m/s and 58 m/s. The
static stability increases from .01 to .02acrosz = 11 km.
The dashed cues shw the erironmental saturation drag.



