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1. Intr oduction

Mountain drag schemes come in two parts.  The
first provides the total source or sink of momentum at
theground(the“baseflux”) andthesecondspecifiesthe
vertical distribution of forcing.  Base flux schemes gen-
erally rely on statistical measures of the height, shape
and orientation of the unresolved terrain (e.g., Baines
and Palmer 1990, Lott and Miller 1997, Scinocca and
McFarlane 2000).  Here we propose an analytical esti-
mate of this drag vector.  We also propose a new correc-
tion for nonlinearity at the source, guided by older
schemes that allow a gradual transition between linear
and nonlinear dimensional drag laws (e.g., Pierrehum-
bert1987,Lott andMiller 1997). Here,thetransitionis
based on the known range of mountain heights within
the grid cell.  Reference to these subgrid topographic
heights further leads to a refinement of the rule for clip-
ping the wave amplitude to the saturation value as a
function of height.

2. Linear base flux

Suppose that the topography can be analyzed into
Fourier amplitudes , where  is the hori-
zontal wavenumber.  We write  for the
component of the large-scale flow, , along the gradi-
entof theterraincomponentwith wavenumber . Then
thelinearized boundary condition is

, (1)

where  is the transform of ,
the vertical velocity component at the surface.  We
neglect temporal variations of  and assume gradual
verticalvariationssuchthat , where

 is the stationary vertical wavenumber.  If we also
ignore horizontal variations of the buoyancy frequency,

, and consider only hydrostatic scales , the
WKB approximation for the vertical structure is

, (2)
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with . It thenfollowsfrom (1) and(2) that,
at the surface,

. (3)

Thederivative is independentof , asis thehorizon-
tal velocity perturbation associated withw.  This veloc-
ity, say , is completely determined by a velocity
potential, , such that .  If we neglect
density variations, conservation of mass implies

.  Then, using (3), we have
.  The synthesis is

, (4)

where .  Thus,  is a slightly smoothed
transformation of the terrain height.  The spatial-trans-
form equivalent of (4) is

. (5)

The velocity perturbation  produced by each spec-
tral component of  is perpendicular to the corre-
sponding phase lines of the topography and directed
downhill. For physicalconsistency, it is necessaryto fil-
ter the input topography so as to retain only the scales
that force stationary gravity waves.

The subgrid velocity perturbation  is
independentof theresolvedvelocity . However,
the momentum flux across a horizontal surface, namely,

, (6)

depends on the resolved wind through .
Let , where  is a representative con-
stant.  Then (6) becomes

. (7)

The quantity in brackets, , is an outer
productof two-dimensionalvectorsthatdependonly on
the terrain.  Subject to our assumptions, it contains all
relevant information about the topography, including
amplitude, variance and anisotropy.  Using angle brack-
ets to denote a grid-cell average, we can write
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(8)

for the estimate of drag at a model grid-point.

Shown in Fig. 1 is a plot of the linear drag
over theWesternHemisphere.Theassumedlarge-scale
wind is purely zonal at -8 m/s in the tropics and 13 m/s
in the extratropics.  A constant buoyancy frequency,

, is assumed.  The drag was obtained
from (5) using distances measured on a spherical sur-
face.  We pre-processed the 1/30 degree topography
with afilter thatpassesonly scalesof lessthanabout1.5
degreesof longitudeandlatitude. Theaveragingis over
the same scale.

3. Nonlinear base flux

We propose to evaluate the nonpropagating drag
by using dimensional analysis and assuming an “oro-
graphic adjustment” process (Pierrehumbert and
Wyman 1985, Pierrehumbert 1987).  What follows is a
fairly standardtreatmentalongtheselines(e.g., Lott and
Miller 1997), except that we will allow for a range of
mountain heights within the grid cell.

Weassumethatthetopography is characterizedby
well-defined features that can be binned into height
ranges with well-defined areal coverage.  If the moun-
tain height exceeds a certain order-unity threshold,
that depends on both  and , the flow is blocked or
deflectedbelow alevel . For terrainfeatures
with heights less than , the drag is entirely linear and
propagating.  For those greater than , it includes a
propagating and a nonpropagating contribution.  We
relate the mountain width  to elevation above its base
by introducing a parameter: .

As the flow becomes blocked by topography, the
drag law in the blocked layer changes from

 to , where  and
 are the ambient wind component and length of the

mountain,respectively, in thedirectionof thedrag. The
assumption of orographic adjustment essentially means
thatthedepthof theunblockedflow below thesummitis
limited to a scale  proportional to the internal wave
scale .  In other words, the nondimensional depth

 of the unblocked layer is set by a univer-
sal threshold, , related to the critical
Froude number.

With theseassumptions,thedragcanbeexpressed
in terms of as follows:

(9)

Here  and  refer to the vertically propagating
and nonpropagating parts of the base flux, respectively
and  and  are constants.  This purely dimensional
formulation is similar to that of Lott and Miller (1997),
but it limits the propagating drag to a residual when

. Theparameter appearsin becausethe
vertical cross-section of the obstacle within the blocked
layer is reduced by the tapering of the mountain when

.

To integrate (9) over the grid cell, we need a rela-
tionship between  and .  It is impractical to use the
full height distribution because while  is assumed
constant,  is time-dependent. Data analysis suggests
that for heights exceeding a certain threshold of around
200 m, we may assume a power law,

,

where ,  and  are universal constants.  If we can
neglectoverlapsbetweenterrainfeaturesandignoreany
correlationbetweenanisotropy andmountainheight,the
areal coverage  of features in the range from to

 will be proportional to , where
 is the number of features in the range.  For this

number we assume another power law, namely,
. Theconstants and will not

appearin any results.Analysisof high-passtopography
suggests  over most parts of the earth’s land sur-
face.

If wetake and constantoverthegrid cell and
use the stated assumptions about the mountain height
distribution, we can integrate (9) with respect to area to
obtain

(10)

for the average drag.  Here and we
have defined , with the
superscripts on  indicating that  is replaced with
either  or .  The above
resultfor includestheeffectof reducingtheforcing
areaelement by thefactor to accountfor
the horizontal clipping (cf. Lindzen 1988).

Clearly (8) is a better linear drag formula than
(10). Oursolepurposein introducingthelatteris to par-
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tition thedragbetweenpropagatingandnonpropagating
components.  In effect, we determine  by setting

andthensubstituting evaluated
from (8) and  where  is the linear limit
of .  We also allow (8) to determine the direction of
thedrag. In thisway, wefind thatthebaseflux, asmod-
ified by the bulk dimensional analysis, is

(11)

The nonpropagating part should be applied to the
resolved momentum below a reference level while the
propagating part should be distributed over the column
according to a level-by-level determination of wave sat-
uration.

The transition from linear flux to saturation flux
for thetwo extremecasesof is shown in Fig.
2, in which  is graphed as a function of

 with , and .  Also
shown is the normalized total drag

 based on the additional assump-
tion that .  This choice for  produces
a maximum total drag of approximately , which is
a compromise between the maximum drags obtained in
two- and three-dimensional nonlinear simulations, as
summarizedby Lott andMiller (1997)andScinoccaand
McFarlane (2000).

4. Level-by-level determination of momentum forc-
ing

To obtain the momentum forcing from
, we need the vertical pro-

file .  Let  denote the vertical particle dis-
placement in a stationary mountain wave and define

, where is thebuoyancy frequency
and  is the resolved wind component in the direc-
tion opposite the net drag.  We also assume a density
profile .  By defining

,

a function of both the mountain amplitude and the envi-
ronment at heightz, we can write the integral of the
propagating part of (10) as

(12)

where  and
.  The quantity  is proportional to the

areally averaged vertical momentum flux.  Therefore,
according to the theorem of Eliassen and Palm (1960),
the value of  associated with a particular feature is
independent of  until that part of the disturbance
breaks.  We are able to retain this constraint after wave-
breakingbecausethesaturateddragdoesnotdependon

.  As a consequence, the integration of the drag with
respect to the terrain always ranges over the same inter-
val,  to .

If we assume that the horizontal scales of the indi-
vidual features do not change as a result of wavebreak-
ing over the source, the average flux as a function of
height can be written

(13)

where  and the flux has been parti-
tioned into unbroken and broken components,  and

, respectively, corresponding to the two terms in
parentheses in (13).  Let .
Then

(14)

where .  The “satura-
tion profile” (14) specifies how the momentum flux
associated with the full range of terrain features is lim-
ited by the local saturation flux, proportional to

.  We have assumed in (14) that the distur-
bance cannot gain energy from the environment.  This
means that the residual flux from the broken compo-
nents,proportionalto , will fall below theenviron-
mental saturation wherever  increases with .

In Fig. 3, we graph  to show the transi-
tion to saturation as a function of height above the
mountainsfor two differentrangesof andanassumed
environmental column described in the caption.  The
dashed curve is the local saturation value, .
Momentum anomaly is deposited in the layers where

 is decreasing, which, in this case, occur just above
the two assumed jets.  The waves take longest to fully
saturate when the terrain features within grid cells vary
most widely in height ( ).

The present saturation condition is based on the
component of mean wind in the direction of theaggre-
gate drag in the grid cell.  Neglecting the subgrid varia-
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tion of drag direction affects not only the base flux but
also the vertical flux profile if the ambient wind turns
with height.  The latter effect was analyzed by Shutts
(1995). Wearealsoneglectingthepossibilityof re-radi-
ation from breaking regions (Bacmeister and Schoeberl
1989).

5. Unsteady resolved flow

Thesteady-statesituationthatwehaveanalyzedis
thelimit of veryshortadvectivetimescalescomparedto
thetimescalesof thebackgroundflow: in the
case of a single background frequency, .  The oppo-
site limit  is also easy to analyze (the linear
solution in the general case is given by Bell, 1975).  In
fact, it produces essentially the same drag formula as in
the steady case.

Thus, if , we can proceed from (2) but
with  for the vertical wavenum-
ber, where is the(slowly varying)Coriolisparameter.
We have excluded nonhydrostatic waves by assuming

.  Then (3) is replaced by

. (15)

We still have that , and since the
momentum equation implies

, (16)

wemayoperateon(15)with thetransformequivalentof
 to reach ,

where .  If , the synthesis is

, (17)

where is definedby (4) or (5) with replacing . In
this case,  is not related to the velocity potential for
the flow perturbation.

Thedragis notdueentirelyto theeddymomentum
flux, but is still determined by the surface pressure dis-
tribution according to

. (18)

Notethat(18) is essentiallythesameasin thestationary
case (7).  This result may have applications to small-
scale internal waves generated by semi-diurnal tidal
flows in theocean.But sincethedragis independentof
frequency when , (18) is somewhatmoregeneral
than simple harmonic motion.
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Fig. 3. The normalized propagating drag as a function
of height for the two extreme cases.   The assumed wind
profile (shown at right) has jets of 38 m/s and 58 m/s.  The
static stability increases from .01 to .02 s-1 acrossz = 11 km.
The dashed curves show the environmental saturation drag.

Fig. 1.  The drag due to stationary linear mountain
waves over North and South America and western Ant-
arctica.  The assumed surface wind is purely zonal at -7
m/s in the tropics and 13 m/s elsewhere.  The assumed
surface static stability and density are .01 s-1 and 1.0
kg/m3, respectively.  The arrow below the plot shows
the scale for 2 Pa.
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Fig. 2. The normalized propagating drag,Dp, and
total drag as a function of normalized maximum
mountain height for two extreme cases.


