22

CALIBRATION OF ENSEMBLE SPREAD USING FORECAST SPECTRA
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1. Introduction

Estimating internal (atmospheric) error growth by ob-
serving the real atmosphere would be ideal, but the
absence of good analogues prevents a robust estimate
(Van Den Dool 1994) and we are forced to use models.
An understanding of the second-moment statistics (spa-
tial variance and its spectral decomposition) of a NWP
model is one step toward full utilization of the model
as a substitute for the real atmosphere, facilitating pre-
diction and predictability experiments. Examples in-
clude observation-system simulation experiments for de-
signing observing and data-assimilation systems, experi-
ments to estimate the limits of predictability of phenom-
ena or scales, and experiments to characterize internal
and external (model) error growth. Ensemble forecast-
ing in some capacity lies at the heart of much of this re-
search, but quantitative results from ensemble forecasts
often rely on the assumption that the forecast model re-
produces the first and second moments of the climate of
the real atmosphere.

In this paper we explore the quantitative relationship
between second-moment NWP model forecast statistics
and ensemble spread, and the effect on resulting error-
growth estimates. The inability of a model to produce
realistic error growth in either phase or amplitude is re-
ferred to as a deficiency, and it is really one manifesta-
tion of model error. It is also different from a phase or
amplitude error in the traditional sense, though it may
be related. Following Leith (1974), we start by assert-
ing that NWP forecasts with scale-dependent spatial vari-
ance (thus spectra) similar to the real atmosphere are nec-
essary to comprise an ensemble intended for predictabil-
ity studies. Forecast energy spectra describe forecast am-
plitude, and we will show that in the absence of other fac-
tors, an amplitude-deficient model will produce spread-
deficient ensembles. Further, knowledge of the spectral
properties of a forecast model can explain the ensemble
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deficiencies when phase deficiencies are small or irrel-
evant. The concepts are demonstrated with a simple,
non-dynamical, statistical model, and tested with three
modern NWP models. Empirically measuring the ampli-
tude deficiencies in spectral space allows a correction, or
calibration, of ensemble spread to account for them. It
also provides a method for predicting the effect of model
changes on ensemble spread when those model changes
primarily affect its ability to produce dispersion in fore-
cast amplitude.

2. Ensemble response to damping

Assume we have a perfect model, and many forecast
cases over which it can be evaluated. Further assume
large ensembles for each of those cases, where each en-
semble member is a forecast with the same model but
started from slightly different initial conditions. The op-
erators averaging over cases and ensembles will be omit-
ted for notational simplicity. One way to calculate en-
semble spread is to average the spatial variance of the dif-
ference between all possible pairs of model forecasts for
the same forecast period. One forecast pair is represented
by P(x,t) and Q(x,t), with difference S(x,t) = P— Q.
The ensemble spread is then the spatial variance of S
o4(t) = <(S— (S))2>, where the operator (x) denotes a

spatial average, and we understand that o%(t) is really
the average over all possible pairs. Initially S(x,0) is
very small, but it grows until the difference between any
P and Q can no longer be distinguished from the differ-
ence between random selections from climatology. Sim-
ilarly, 03 is small and grows to saturation at 03 = 203,
which is twice the climatological spatial variance of the
model forecast (e.g. Leith 1974; subscript P denotes any
model forecast for a particular time period), and is fixed
for a given calendar date. Because our model is perfect,
02Q = 03 in the climatological average, and we assert that
they are both equal to the observed spatial variance of the
atmosphere.

To further simplify the discussion and clarify the con-
cepts, we temporarily drop the dependence on time. In-
voking all of the simplifications, the ensemble spread can



be written as
o%=((P-Q-(P-Q)?). M

In Fourier space (with coefficients denoted %), the dis-
crete spectral power of the difference field P — Q is the
ensemble spread as a function of wavenumber k and can
be written

S=P2+Q*-2PQ. )
Within our perfect model framework, we introduce
one simulated source of model error in the form of a
smoother R that reduces the forecast amplitude. In spec-
tral space, applying the smoother to the model states
amounts to the operations:

p=RP, G=RQ. @3)

With (3), the spread at wavenumber k that results from
using damped model states is

§ =p"+6-2pq
=R (P?+Q*-2PQ) ()
=RZ,

Damping in a model reduces the ensemble dispersion by
a greater fraction than it reduces the amplitude of the
model states. For the discrete model at all scales, the
spread in an ensemble of damped model forecasts is then
given by

o N—lé% B N—1Rzéz -

PP RS

where N is the total (unfolded) number of Fourier coeffi-
cients.

Thus if spread is determined by summing the spectral
coefficients & or & for all pairs of model states, and
the spectral response function R is known for a particular
forecast case, then the instantaneous effect of damping
on ensemble spread can be determined. If Ris interpreted
as a manifestation of model error, the instantaneous ef-
fect of that model error is known, and the spread of an
ensemble of damped (erroneous) states can be calibrated
to agree with the ensemble of undamped (perfect) states.

As an example, consider a simple smoother applied to
all 1-D forecast pairs P(x,t), Q(x,t) in a large ensemble
on the domain from x = 0 to NAx. A 1-2-1 smoother in
physical space with a coefficient 0.5 gives the response
in spectral space R = cosz(”kT”AX) (e.g. Haltiner and
Williams 1980). To measure the effect of damping P and
Q, and saturating the error spectraat k > kg, Where kg
isthelargest scalefor which the error is saturated, alarge
sample of random statistical realizations are created. The
parameters of the experiments are chosen to qualitatively
represent observed geopotential height spectra and error
growth.
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Figure 1: The effect of damping on error growth as esti-
mated by ensemble spread for N = 128.

The error growth in time can be estimated by assum-
ing an error doubling time of 2 d. Thus 0% and o are
evaluated for N = 128 (Fig. 1). It is clear that damp-
ing inhibits both the growth rate and the asymptotic limit
of ensemble spread. Repeating this computation for a
range of N (not shown) reveals that the effect dimin-
ishes with increasing N (finer resolution for this fixed-
size domain). The dependency on scale selection can be
explained by recognizing that, when R exhibits sharper
scale selection, it acts on smaller scales containing less
energy and saturating earlier in the forecast. The asymp-
totic limit is lower because the damped spread will sat-
urate relative to the damped model, which has spectral
amplitude below that of the perfect model, and the same
dependency on scale selection applies. As N increases
and R is more selective, the damped dispersion curves
converge to the undamped curve. Recall that the model
here is assumed perfect and the climatological ensemble
spread shown by the solid curve in Fig. 1 is equivalent
to climatological error variance. Therefore, the real con-
sequence of an under-dispersive ensemble resulting from
using an overly-damped model in experiments is overly-
optimistic estimates of predictability, and convergence
toward the undamped curve mimics the convergence of
error-growth estimates evident in the literature.

This example shows that an ensemble will be under-
dispersive if it is comprised of model forecasts that are
unrealistically damped or truncated compared to the real
atmosphere. It also shows that instantaneous ensemble
dispersion calculated with two models that have clima-
tologically different spectra are linked by their spectral
properties. This approach cannot address model differ-
ences in phase dispersion properties of a global model.



The spread in phase of an ensemble partially determines
& without necessarily affecting P2 or Q2. Furthermore,
this example uses a time-invariant response R that ex-
plains the instantaneous behavior of damped ensemble
spread, and does not include dynamic scale interactions
that contribute to dispersion and error growth.

With real NWP model runs, p and § are known, and
R can be empirically estimated via (3) with two different
model forecast or one model forecast and an analysis. In
an ensemble experiment, SZ(k) is also easily measured,
and therefore S*(k) can be estimated with (4). The next
section applies this procedure to the WRF model, and
compares resulting dispersion characteristics.

3. Ensemble spread in two similar models

The rest of this paper is concerned with extending
the concepts developed in section 2 to include time-
dependent dynamics, and testing them with real NWP
models run on a hemispheric domain with AX = 90 km.
We are interested in the spatial variance of the models,
and the experiments here are controlled to isolate those.
To begin, spectra of the forecasts and dispersion charac-
teristics of ensembles with both undamped and damped
versions of the WRF are compared. All results shown
are for 50.0 kPa geopotential height.

The climate of the WRF relative to the real atmosphere
is not important for these experiments and we consider
the undamped WRF, and ensembles run with it (denoted
WREF), to be the references against which model changes
are evaluated. One source of simulated model error is in-
troduced by applying a 2-D, second-order diffusion term
that explicitly (and locally in time) reduces spatial fore-
cast variance at small scales. A response function R cal-
culated from damped and undamped WRF runs reveals
the effects of the model error in spectral space. Ensem-
bles run with the damped version of the WRF (denoted
DMP) are compared to ensembles WRF, and Ris used to
explain the time-varying differences in ensemble spread.

Ten-member ensembles are generated with the Errico-
Baumhefner technique, which approximates random
analysis errors. Control (unperturbed) initial conditions
are given by the NCEP final analyses. To avoid the dan-
ger of obtaining regime-dependent results, all results are
averaged over six forecast periods from the 2001-2002
cool season in the northern hemisphere.

If R carries time-integrated dynamics information on
the effect of damping, (4) may be useful for predicting
and explaining the dispersion of an ensemble. This can
be easily checked by computing R(k,t) = p(k,t)/P(k,t),
and using (4) to correct the damped dispersion é%(k,t)
to éz(k,t). Rather than computing dispersion in physical
space, the dispersion spectrum is integrated in k to get the
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Figure 2: Dispersion of the ensemble with undamped
(WRF) and damped (DMP) WRF forecasts. The cor-
rected (COR) dispersion results from using the R? to pre-
dict the dispersion without damping.

total dispersion at each time for each forecast case. The
result, averaged over all the cases, is shown in Fig. 2.
The corrected (COR) dispersion, closely follows the dis-
persion of the ensemble of undamped WRF runs. This
implies that the time-dependent properties of R contain
most of the time-integrated information on scale interac-
tion that is required to relate ensemble dispersion with
these two different models.

Spread in the WRF ensembles grows faster than spread
in the DMP ensembles over the first 4.5 forecast days.
Error growth estimated from the WRF dispersion curve
is faster than that estimated from the DMP curve. As-
suming this behavior continues to the asymptotic limit, a
shorter estimate of the limit of predictability would result
from using the WRF curve. In this case the correction ap-
plied to DMP could prevent the underestimation.

To better understand the effect of damping the WRF,
we can compare it to the undamped WRF in spectral
space for a 6-d forecast lead time (Fig. 3). In panel (a),
the WRF control forecast spectrum is shown for com-
parison (thin solid line). When undamped, the disper-
sion is saturated through the high-wavenumber part of
the spectrum. But the dispersion of damped forecasts
does not saturate at any scale, relative to the undamped
WRF forecast, and the total dispersion (area under the
curve) of DMP lags below the dispersion of WRF. The
spectral response function R < 1 everywhere in Fig. 3b.
This is the ratio of damped to undamped spectra, and
consistent with section 2 it appears to be responsible for
the under-dispersion of the DMP ensemble that results
from amplitude deficiencies in the damped WRF. If the
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Figure 3: In (a), the undamped (thick dotted line) and damped (thick solid line) WRF 50.0 kPa geopotential height
spread in spectral space, compared to the undamped WRF control forecast spectrum (thin solid line). In (b), a response
function is shown, calculated from the ratio of damped to undamped WRF forecast spectra. Results are for 6-d

forecasts.

forecast amplitude of the damped and undamped WRF
were the same, averaged over these six cases, R would
be identically one. But here a time-varying R is used to
construct curve COR from curve DMP in Fig. 2.

This calibration was also tested against ensembles
generated with the CCM3 model (Kiehl et al. 1998),
which is fundamentally different from the WRF. Because
phase differences are important, the calibration was not
successful.

4. Conclusions

The most important product of this research is a
method to calibrate ensembles with models that are de-
ficient in spatial variance. In effect, a model can be cal-
ibrated for predictability research. The time-dependent
spectral response is trivial to estimate using two cate-
gorical forecasts with different models. The fact that it
can be used to almost entirely explain the differences be-
tween two ensemble dispersion curves demonstrates that
it carries time-integrated spectral characteristics. Knowl-
edge of it also allows prediction of ensemble disper-
sion changes that are expected from model changes af-
fecting the spectral characteristics. This could be used,
for example, to adjust the ensemble spread of a coarse-
resolution model to account for the forecast by a high-
resolution model.

The comparison of ensembles with damped and un-
damped versions of the WRF showed that knowledge of
forecast spatial variance, and its spectral decomposition,
is necessary to interpret error-growth estimates with en-

sembles. But the quantitative relationship between spec-
tral response and dispersion did not hold for a model
with different phase error properties, showing that cor-
rect spectral statistics in a forecast model are not suf-
ficient for determining ensemble spread. Models with
different phase-error growth characteristics result in en-
sembles with different phase-dispersion characteristics.
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