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Abstract

We describe a real-time algorithm for removing non-precipitating echoes from WSR-88D reflectivity data using
vertical profiles of reflectivity, Doppler velocity and Spectrum Width. Various attributes, described in this paper, were
computed from the radar moments. A few volume scans of radar data were chosen and used to train a feed-forward
neural network trained in a supervised manner using resilient-propagation and adaptive weight decay. The trained
network was tested on other, independent data cases. The performance of the algorithm was compared to existing
methods of performing automated quality control on radar reflectivity data using these independent test cases. We
find that the neural-net outperforms the other techniques handily. We also explore the limits on how general the
neural network is and make suggestions for quality control in general situations.

1. Introduction

From the point of view of automated applications operat-
ing on weather data, echoes in radar reflectivity may be
contaminated. These applications require that echoes
in the radar reflectivity moment correspond, broadly,
to “weather”. By removing ground clutter contamina-
tion, estimates of rainfall from the radar data using the
National Weather Service (NWS) Weather Surveillance
Radar-Doppler 1998 (WSR-88D) can be improved (Ful-
ton et al. 1998; Kessinger et al. 2003). A large num-
ber of false positives for the Mesocyclone Detection Al-
gorithm (Stumpf et al. 1995) are caused in regions of
clear-air return (McGrath et al. 2002). Poor segmention
and forecasting are achieved by a hierarchical motion
estimation technique in regions of ground clutter (Lak-
shmanan et al. 2003; Lakshmanan 2001). Hence, a
completely automated algorithm that can remove regions
of ground clutter, anamalous propagation and clear-air
returns from the radar reflectivity field would be very
useful in improving the performance of other automated
weather algorithms.

The problem of examining the radar moments for au-
tomated removal of non-precipitating echoes has been

the focus of some research by Steiner and Smith (2002)
and Kessinger et al. (2003). The Radar Echo Classi-
fier (REC) described in (Kessinger et al. 2003) has been
implemented into the operational Open Radar Product
Generator (ORPG). It incorporates the ideas introduced
in (Steiner and Smith 2002) and hence, provides a good
baseline for comparision. In this paper, the development
of a neural network (NN) to do the same task is de-
scribed. We compare the neural network’s performance
on independent cases with the Radar Echo Classifier
(REC).

2. The Neural Networks

The final set of features used in the network for which
results are reported were: for the lowest scan of veloc-
ity, spectrum width and the second lowest scan of re-
flectivity: local mean, local variance, difference between
the data value and the mean, for the lowest scan of
reflectivity: local mean, local variance, difference be-
tween the data value and the local mean, REC Tex-
ture (Kessinger et al. 2003), homogeneity, SPIN (Steiner
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and Smith 2002), number of inflections at a 2dBZ thresh-
old, SIGN (Kessinger et al. 2003), echo size. Features
related to the vertical profile of reflectivity were the max-
imum value, weighted average, difference between data
values at the two lowest scans, echo top height at a 5dBZ
thresholds.

To decorrelate the data value from the mean and me-
dian, the difference between the data value and the local
mean was used. The weighted average of the reflectiv-
ity values is computed over all the elevations where the
weight of each data point is given by the height of that
pixel above the radar. This takes into account the entire
vertical profile instead of just the first two elevations. The
homogeneity of the reflectivity field is defined as:

homxy =

∑
iεNxy

1

1+(
Ixy−Ii

Ixy
)2

card(Nxy)− 1
(1)

where Nxy is the set of valid pixels (Ii) in the neighbor-
hood, Nxy, of the pixel at (x, y) in the image, Ixy is the
pixel value and card(Nxy is the number of such neigh-
bors. Echo-size is defined as the fraction of neighbors
whose values are within 10dBZ of this pixel’s reflectiv-
ity value. An inflection point is defined similar to the
SPIN (Steiner and Smith 2002) except that the inflec-
tion is defined not in a polar neighborhood, but along the
entire radial until that point.

We used two separate neural networks – one in re-
gions where Doppler Velocity and Spectrum Width are
available, and another where they aren’t. All the neural
network inputs were scaled such that each feature in the
training data exhibited a zero mean and a unit variance
when the mean and variance are computed across all
patterns.

a. Network Architecture

We used a resilient backpropagation neural network
(RPROP) described in Riedmiller and Braun (1993).
The RPROP network was trained using supervised
batch learning in a multi-layer perceptron (MLP) network.
There was one hidden layer. Every input unit was con-
nected to every hidden unit, and every hidden unit to the
output unit. In addition, there was a short-circuit con-
nection from the input units directly to the output unit,
to capture any linear relationships. Every hidden node

had a “tanh” activation function, chosen because of its
signed range. The output unit had a sigmoidal activa-
tion function so that the outputs of the networks could
be interpreted as posterior probabilities (Bishop 1995).
Each non-input node had, associated with it, a bias value
which was also part of the training.

The error function that was minimized was a weighted
sum of the cross-entropy (which Bishop (1995) suggests
is the best measure of error in binary classification prob-
lems) and the squared sum of all the weights in the
network. The weight decay term improves generaliza-
tion (Krogh and Hertz 1992). The relative weight, λ, of
the two measures is computed within a Bayesian frame-
work (MacKay 1992; Bishop 1995).

The with-velocity network had 22 inputs, 5 hidden
nodes and one output while the reflectivity-only network
had 16 inputs, 4 hidden nodes and one output.

A validation set ensures a network’s generaliza-
tion, typically through the use of early stopping meth-
ods (Bishop 1995). In the neural network literature, a
validation set is usually utilized to select the architec-
ture of the neural network. We did not use a separate
validation set, mainly because we did not have enough
training data in order to do so. Because we lacked a
validation set, we did not consider any alternate net-
work topologies. A different network topology may out-
perform our neural network. Weight decay, rewarding
smaller weights, is an alternative way to ensure gener-
alization (Krogh and Hertz 1992; Bishop 1995).

We did use an independent testing set, as decribed in
Section 3.. An extended form of this study, could involve
training with the current training set, validating with the
current testing set, and then testing on a newly gathered
and truthed set of cases. Such a study could make use
of early stopping as well.

Just eight volumes of WSR-88D data were selected
to encompass different scenarios – strong convection,
stratiform rain, ice-coating, low-topped cells, etc. A hu-
man interpreter examined these volume scans and drew
polygons using the WDSS-II display (Hondl 2002) to
select “bad” echo regions. An automated procedure
used these human-generated polygons to classify ev-
ery pixel into the two categories (precipitating and non-
precipitating).



Radar Echo Classifier
Number nulls false-alarms miss hit POD FAR CSI

1 48554 2573 579 512 0.47 0.83 0.14
2 1187 161 0 0 nan 1 0
3 13440 23 24648 17927 0.42 0 0.42
4 46124 20474 1033 1126 0.52 0.95 0.05
5 10420 14 20798 13828 0.40 0 0.40
6 29731 629 4965 7562 0.60 0.08 0.57

total 149456 23874 52023 40955 0.44 0.37 0.35
Neural Network

1 50346 781 271 820 0.75 0.49 0.44
2 419 929 0 0 nan 1 0
3 13363 100 5489 37086 0.87 0 0.87
4 25517 41081 7 2152 1 0.95 0.05
5 10259 175 3828 30798 0.89 0 0.88
6 14697 15663 76 12451 0.99 0.56 0.44

total 114601 58729 9671 83307 0.90 0.41 0.55

Table 1: Skill scores when classifying using the Radar Echo Classifier and when using the Neural Network.

3. Results and Conclusions

For testing, a diverse set of volume scans of weather
data were chosen and bad echoes marked on these vol-
ume scans by a human observer. The volume scans are
listed below:

1. KAMA Apr 18, 2002 07:19:10 to 07:23:49 – Signif-
icant AP.

2. KFSX Jan 10, 2003 16:12:09 to 16:20:20 – Terrain-
induced ground clutter.

3. KTLX May 14, 2003 13:41:08 to 13:45:45 – Strong
convection with sharp gradients.

4. KTLX May 19, 2003 08:57:52 to 09:06:02 – AP and
spatially smooth clear-air return.

5. KINX May 20, 2003 10:25:52 to 10:30:31 – Strong
convection close to the radar.

6. KTLX May 20, 2003 16:39:14 to 16:44:30 – Clear-
air return at several elevations.

The volume scans were processed using the trained
neural network and using the Radar Echo Classi-
fier (Kessinger et al. 2003). Comparisions were made on
a pixel-by-pixel basis of all pixels for which at least one of
the elevations had a reflectivity value greater than zero

dBZ. Nulls refer to pixels which are not weather-related,
and are correctly classified. Hits refer to pixels which are
weather-related and are correctly classified. Misses refer
to weather-related echoes that are missed, while false-
alarms refer to non-weather echoes that are incorrectly
classified.

The confusion matrices for each of the volume scans
are shown in Table 1 for the two algorithms being com-
pared. The first row of Figure shows a case of significant
AP/GC while the third row shows a significant precipita-
tion event. Looking at these images, it is possible to put
the quantitative measures (cases 1 and 3) in context. We
see that a lot of good data is misclassified by the Radar
Echo Classifier. At the same time, the neural network
makes its mistakes on lower reflectivity values, but gets
higher reflectivity values (whether AP/GC or good data)
correct more often. This is a consequence of the cost
factors used in the network error equation.

Terrain-induced ground-clutter (Jan. 10, 2003 from
KFSX, shown in the second row of Figure ) was not part
of the training regimen of the neural network, and does
pose problems. In mountain regions, terrain heights, or
the height of the echo above terrain, could be part of the
inputs to the network, instead of, as currently, simply the
height above the radar. The network would also have to
use texture statistics from the second tilt of the radar, and
use vertical differences for the lowest three tilts.

The neural network identifies regions of precipitation
with high skill. It is able to identify bad echoes (AP/GC)
when they are similar to cases that it has seen before,
but is not able to deduce unfamiliar situations (terrain-

induced GC, vertically continuous clear-air return, chaff,
etc.) Even with these limitations, however, the neural net-
work greatly outperforms existing automated techniques.
At locations where one or more of these bad-echo forma-



Unedited Vertical Maximum Edited using Neural Network Edited using (Kessinger et al. 2003)

Figure 1: Selected testing cases: KAMA 4/18/2002, KFSX 1/10/2003 and KTLX 5/14/2003. Performance on a
data case with significant AP/GC is shown in the first row. The second row illustrates that the Neural Network
performs poorly on cases from the Mountain West, where it was not trained, while the third row shows a typical
spring precipitation event from the Great Plains.

tions is frequent, the neural network should be trained
with those. The network, if trained judiciously, shows
high skill in “remembering” and removing bad-echo pat-
terns that it has been trained on.
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