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r 
⋅∇qc = Sref (x, y) − qc /τ cU   (1a) 1. Introduction 

                  

r 
⋅∇qh = qc / τc − qh /τ hU    (1b) 

A linear orographic precipitation model (Smith 
and Barstad, 2003) has been developed with the 
following characteristics.   
• Analytically tractable so that its properties 

can be easily understood 
where Tc and Th are the characteristic time-
scales for cloud water conversion and 
hydrometeor fall-out. The source term (S) in (1a) 
can be the classical upslope form 

• Applicable to actual complex terrain and 
arbitrary wind direction so that it can be 
tested against real data 

 S = Cw

r 
U •∇h(x, y)  

• Reduces to the classical upslope model so 
that it can be compared with earlier work (Smith, 1979), or computed using the moist 

adiabatic lapse rate and mountain wave theory. 
The coefficient Cw  relates the rate of ascent 
with the rate of condensation. The last term in 
(1b) is the precipitation rate at the ground (P). 
As lifting in front of a mountain drives S positive, 
the transformation term in (1a) converts cloud 
water to hydrometeors in (1b). S gets the 
opposite sign in downslope regions, drying the 
air and evaporating hydrometeors.  

• Includes the basic physical elements: airflow 
dynamics, condensed water conversion, 
advection and fallout, and downslope 
evaporation, leading to a theory of 
precipitation efficiency  

The model includes Fourier Transform solutions 
of the linear equations of wave dynamics and 
advection of condensed water.  Microphysical 
processes are represented by time delays 
between condensation and precipitation. Inputs 
to the model are: underlying terrain, wind speed 
and direction, surface temperature and lapse 
rate. The three factors controlling the 
precipitation in the model are: 1) the amount of 
water vapor flux approaching the mountain, 2) 
the depth of the moist layer in comparison to the 
depth of airflow lifting, and 3) the advection of 
condensed water from the production areas 
(uplift) to the loss areas (downdraft). 

In this brief presentation of the theory, we skip 
the derivation and display the final result, a 
transfer function relating the Fourier Transform 
of the terrain h(x,y) to the Transform of the field 
of precipitation P(x,y), 

ˆ P (k,l) =
Cw iσ ˆ h (k,l)

1− imHw[ ]1+ iστ c[ ]1+ iστ h[ ]
  (2) 

m = {[
Nm

2 −σ 2

σ 2 ](k 2 + l2 )}1/ 2     (3) 

Cw = ρv0 (
Γm

γ
)    (4) 

2.  Governing Equations 

Based on the steady-state assumption, the 
advection and transformation of vertically 
integrated condensed water (qc = cloud water 
content and qh = hydrometeor content) can be 
written, following Smith (2003): 

 

 

*  Corresponding author address: Ronald B. Smith, 

Yale University, P.O. Box 208109, New Haven, 

CT  06520-8109; e-mail:ronald.smith @ yale.edu 

In (2), m is the vertical wave number and Cw the 
lifting sensitivity factor. In (3) (k,l) are the 
horizontal wave number components, 

vluk +=σ  is the intrinsic frequency, Hw is the 
scale height of water vapor, ρv0 is the density of 
water vapor, γ is the ambient lapse rate and Γm 
is the averaged moist adiabatic lapse rate. The 
required transforms can be done analytically in a 
few cases, but generally, a double Fast Fourier 
Transform (FFT) is used. 

 



The first factor in the denominator of (2) 
describes airflow dynamics. The second and 
third factors describe cloud delays and 
advection. The reduction in precipitation 
efficiency due to downslope evaporation is not 
contained explicitly in (2), but is present when 
the predicted precipitation field P(x,y) is 
truncated according to PTrun(x,y)= 
Maximum(P,O). An interesting property of (2) is 
that the dynamics and cloud-delay factors in the 
denominator have a similar form. The 
appearance of i = −1 in each factor causes a 
phase shift of the solution, in addition to the 
amplitude change. The different sign in the 
dynamic and cloud factors is significant. The 
negative sign in the dynamics factor gives an 
upwind shift to the precipitation pattern while the 
positive signs in the cloud factors cause a 
downstream shift. These factors also differ 
significantly in the way that wavenumber enters 
the definitions of m(k, l)  and σ(k,l) . Note that 
the two cloud time scales, τc  and τ f  are 
mathematically analogous. When  
m = τ c = τ f = 0 , (2) reduces to the standard 
upslope model with no airflow dynamics and no 
condensed water advection (Smith, 1979).  

Compared to the standard upslope model, the 
current model reduces precipitation with two 
processes. First, depending on the depth of the 
moist layer, the moist static stability, wind speed 
and mountain scale and shape, the terrain 
induced lifting may not penetrate up through the 
moist layer, thus limiting condensation. Second, 
depending on the cloud physics time scales, the 
wind speed and the mountain scale, the 
condensed water may be advected to the lee 
side and evaporated instead of precipitating.  
These two limitations can be monitored by 
calculating the efficiency numbers,  

PEdyn =
Sdyn

Sref

 PEcloud =
P

Sdyn

 (5) 

 The Sdyn denotes the production rate of 
cloud water in presence of wave dynamics, and 
Sref without wave dynamics. PEdyn is therefore a 
measure of the role played by the wave 
dynamics in the model. The PEcloud is in the 
same way, a measure of how the microphysical 
processes influence the precipitation. 

3.  Triangle ridge 

The triangle ridge is a useful example, as the 
raw upslope condensation value is constant 

over the windward slope. Thus, it is easy to see 
modification caused by airflow dynamics.  The 
combined influence of full dynamics and cloud 
time-delays (2) is shown in Fig. 1, with 
parameters: T0 = 280K , γ = −5.8C ⋅ km−1, 

U = 15ms−1  so Γm = −6.5C ⋅ km−1, 

Nm = 0.005s−1 ,ρSref = 7.4gm −3 , 
Hw = 2500m . Also h  and m = 500m
τc = τ f = 1000s a, = 15km .  In Fig. 1, the raw 
upslope model predicts a constant value of 
condensation, P=15mm/hr, over the windward 
slope, and an equal negative value over the lee 
slope. . The effect of airflow dynamics is to 
reduce the total condensation and shift the 
maximum upwind, close to the “slope-break” of 
the triangle ridge. The source term becomes 
negative slightly upstream of the hill crest. The 
effect of cloud delay reduces the precipitation 
further, and shifts the precipitation peak 
downstream.  The precipitation maximum 
(3mm/hr) is located close to the hill top. There is 
downstream condensation in a lee wave, but 
lee-side descent, drift and evaporation prevent 
precipitation.  

 

 

Figure 1) Condensation or precipitation rates 
(mm/hour) over a triangle ridge with three 
different assumptions: (solid), condensation 
patterns with no dynamics or cloud delays, 
(dotted) dynamics only, (dashed) precipitation 
with dynamics and cloud delays (2). Note the 
great reduction in total precipitation caused by 
dynamics and cloud delays. The flow is from left 
to right. The ridge begins to rise at x=-15 km.  

 



 4.  An application of the linear model 

5.  Conclusions and future work To illustrate the properties of the linear model, 
we present one example of a predicted 
precipitation pattern over real terrain. We select 
the Olympic Range in Washington State as it is 
compact, complex and relatively well studied. It 
is one of the rainiest spots in North America, but 
with a definite rain shadow on the northeast 
side. Our intention in this section is not to test 
the model, but only to exhibit its behavior. 

The new linear model clarifies the roles of uplift 
penetration and condensed water advection in 
orographic precipitation. It also provides an 
extremely quick method for estimating 
precipitation patterns over complex terrain on 
fine scales. The disadvantage is the number of 
strong assumptions required, e.g. linear wave 
dynamics, near saturation, steady state, etc. 
Particularly problematic is the assumption of 
constant cloud physics time scales. Jiang and 
Smith (2003) discuss a strong non-linearity 
associated with collection and accretion that 
may have to be considered. Currently, testing of 
the linear model is underway using data sets 
from CALJET (Neiman et al, 2002), IPEX 
(Cheng, L., 2001), and MAP (Smith et al., 2003) 

For the example, we consider a southwest wind 
with speed 15m/s and a moist stability of 0.005s-

1. The surface temperature and specific humidity 
are 280K and 6.2 g/kg. The moist layer depth is 
2.5 kilometers. The cloud time delays are each 
1000 seconds. The 6 hour accumulated 
precipitation is shown in millimeters, with a 
maximum value of about 26 mm just upwind of 
the highest peak; Mt Olympus (2428m).  ACKNOWLEDGMENTS 

This work is supported by NSF Grant ATM-
0112354. Several features can be noted. Four tongues of 

high precipitation are associated with four 
southwestward directed ridges. Light 
precipitation is found well upstream of the 
mountains, even over the sea.   There is some 
spillover, but mostly the northeast lee slopes are 
dry. The model predicts that the high peaks in 
the northeast part of the massif collect no 
precipitation. 
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