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1. Introduction

A linear orographic precipitation model (Smith
and Barstad, 2003) has been developed with the
following characteristics.

e Analytically tractable so that its properties
can be easily understood

e Applicable to actual complex terrain and
arbitrary wind direction so that it can be
tested against real data

e Reduces to the classical upslope model so
that it can be compared with earlier work

¢ Includes the basic physical elements: airflow
dynamics, condensed water conversion,
advection and fallout, and downslope
evaporation, leading to a theory of
precipitation efficiency

The model includes Fourier Transform solutions
of the linear equations of wave dynamics and
advection of condensed water. Microphysical
processes are represented by time delays
between condensation and precipitation. Inputs
to the model are: underlying terrain, wind speed
and direction, surface temperature and lapse
rate. The three factors controlling the
precipitation in the model are: 1) the amount of
water vapor flux approaching the mountain, 2)
the depth of the moist layer in comparison to the
depth of airflow lifting, and 3) the advection of
condensed water from the production areas
(uplift) to the loss areas (downdraft).

2. Governing Equations

Based on the steady-state assumption, the
advection and transformation of vertically
integrated condensed water (q. = cloud water
content and g, = hydrometeor content) can be
written, following Smith (2003):
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where T, and T, are the characteristic time-
scales for cloud water conversion and
hydrometeor fall-out. The source term (S) in (1a)
can be the classical upslope form

S=C,UeVh(x,y)

(Smith, 1979), or computed using the moist
adiabatic lapse rate and mountain wave theory.
The coefficient C,, relates the rate of ascent

with the rate of condensation. The last term in
(1b) is the precipitation rate at the ground (P).
As lifting in front of a mountain drives S positive,
the transformation term in (1a) converts cloud
water to hydrometeors in (1b). S gets the
opposite sign in downslope regions, drying the
air and evaporating hydrometeors.

In this brief presentation of the theory, we skip
the derivation and display the final result, a
transfer function relating the Fourier Transform
of the terrain h(x,y) to the Transform of the field
of precipitation P(x,y),
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In (2), m is the vertical wave number and C,, the
lifting sensitivity factor. In (3) (k) are the
horizontal wave number components,
o =uk + vl is the intrinsic frequency, H, is the
scale height of water vapor, p.g is the density of
water vapor, y is the ambient lapse rate and T,
is the averaged moist adiabatic lapse rate. The
required transforms can be done analytically in a
few cases, but generally, a double Fast Fourier
Transform (FFT) is used.



The first factor in the denominator of (2)
describes airflow dynamics. The second and
third factors describe cloud delays and
advection. The reduction in precipitation
efficiency due to downslope evaporation is not
contained explicitly in (2), but is present when
the predicted precipitation field P(x,y) is
truncated according to Prun(X,y)=
Maximum(P,0). An interesting property of (2) is
that the dynamics and cloud-delay factors in the
denominator have a similar form. The

appearance of i :\/—_1 in each factor causes a
phase shift of the solution, in addition to the
amplitude change. The different sign in the
dynamic and cloud factors is significant. The
negative sign in the dynamics factor gives an
upwind shift to the precipitation pattern while the
positive signs in the cloud factors cause a
downstream shift. These factors also differ
significantly in the way that wavenumber enters
the definitions of m(k,l) and o(k,/). Note that

the two cloud time scales, 7, and 7, are

mathematically analogous. When
m=t.=7,= 0, (2) reduces to the standard

upslope model with no airflow dynamics and no
condensed water advection (Smith, 1979).

Compared to the standard upslope model, the
current model reduces precipitation with two
processes. First, depending on the depth of the
moist layer, the moist static stability, wind speed
and mountain scale and shape, the terrain
induced lifting may not penetrate up through the
moist layer, thus limiting condensation. Second,
depending on the cloud physics time scales, the
wind speed and the mountain scale, the
condensed water may be advected to the lee
side and evaporated instead of precipitating.
These two limitations can be monitored by
calculating the efficiency numbers,
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The Sy denotes the production rate of
cloud water in presence of wave dynamics, and
Sef Without wave dynamics. PEgy, is therefore a
measure of the role played by the wave
dynamics in the model. The PEg,q is in the
same way, a measure of how the microphysical
processes influence the precipitation.

3. Triangle ridge

The triangle ridge is a useful example, as the
raw upslope condensation value is constant

over the windward slope. Thus, it is easy to see
modification caused by airflow dynamics. The
combined influence of full dynamics and cloud
time-delays (2) is shown in Fig. 1, with
parameters: T, =280K, y=-58C-km",

U=15ms" S0 L =-65C-km™,

N, =0.005s", py,, = 7.4gm ",
H,=2500m. Also  h,=500m  and
7,=7,=1000s, a=15km . InFig. 1, the raw

upslope model predicts a constant value of
condensation, P=15mm/hr, over the windward
slope, and an equal negative value over the lee
slope. . The effect of airflow dynamics is to
reduce the total condensation and shift the
maximum upwind, close to the “slope-break” of
the triangle ridge. The source term becomes
negative slightly upstream of the hill crest. The
effect of cloud delay reduces the precipitation
further, and shifts the precipitation peak
downstream. The precipitation maximum
(3mm/hr) is located close to the hill top. There is
downstream condensation in a lee wave, but
lee-side descent, drift and evaporation prevent
precipitation.
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Figure 1) Condensation or precipitation rates
(mm/hour) over a ftriangle ridge with three
different assumptions: (solid), condensation
patterns with no dynamics or cloud delays,
(dotted) dynamics only, (dashed) precipitation
with dynamics and cloud delays (2). Note the
great reduction in total precipitation caused by
dynamics and cloud delays. The flow is from left
to right. The ridge begins to rise at x=-15 km.



4. An application of the linear model

To illustrate the properties of the linear model,
we present one example of a predicted
precipitation pattern over real terrain. We select
the Olympic Range in Washington State as it is
compact, complex and relatively well studied. It
is one of the rainiest spots in North America, but
with a definite rain shadow on the northeast
side. Our intention in this section is not to test
the model, but only to exhibit its behavior.

For the example, we consider a southwest wind
with speed 15m/s and a moist stability of 0.005s"
'. The surface temperature and specific humidity
are 280K and 6.2 g/kg. The moist layer depth is
2.5 kilometers. The cloud time delays are each
1000 seconds. The 6 hour accumulated
precipitation is shown in millimeters, with a
maximum value of about 26 mm just upwind of
the highest peak; Mt Olympus (2428m).

Several features can be noted. Four tongues of
high precipitation are associated with four
southwestward directed ridges. Light
precipitation is found well upstream of the
mountains, even over the sea. There is some
spillover, but mostly the northeast lee slopes are
dry. The model predicts that the high peaks in
the northeast part of the massif collect no
precipitation.
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Figure 2) A real-world application of the linear
FFT model; the Olympic Mountains under a
southwesterly airflow. The 6 hour accumulated
precipitation is shown shaded with a 2.5 mm
contour interval. The maximum precipitation is
26 mm. The terrain is shown (dotted) with a 200
meter contour interval. The coastline is shown
with a dark solid line.

5. Conclusions and future work

The new linear model clarifies the roles of uplift
penetration and condensed water advection in
orographic precipitation. It also provides an
extremely quick method for estimating
precipitation patterns over complex terrain on
fine scales. The disadvantage is the number of
strong assumptions required, e.g. linear wave
dynamics, near saturation, steady state, etc.
Particularly problematic is the assumption of
constant cloud physics time scales. Jiang and
Smith (2003) discuss a strong non-linearity
associated with collection and accretion that
may have to be considered. Currently, testing of
the linear model is underway using data sets
from CALJET (Neiman et al, 2002), IPEX
(Cheng, L., 2001), and MAP (Smith et al., 2003)
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