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1. Introduction

Surface-layer in-situ observations comprise a rich, ac-
curate, and often dense data source, but they are gen-
erally under-utilized in current operational data assimi-
lation (DA) systems because of the complex interactions
between the surface and the atmosphere aloft. Represent-
ing the structure of the PBL accurately in a mesoscale
NWP model initialization could lead to improved short-
range forecasts of local thermally-driven flows such as
the sea breeze and slope flows. Forecasts of larger-scale
phenomena could also be improved. When a mesoscale
NWP model is used as a tool to generate 3-D datasets for
process studies, an accurate representation of the PBL
would increase confidence in the results.

The EnKF (Burgers et al. 1995; Anderson and Ander-
son 1999) is attractive for assimilation of surface obser-
vations to specify the state of a parameterized PBL (here-
after PPBL) because it is easy to implement and is free
from many of the limitations of the variational approach.
An adjoint model is unnecessary, explicit balance con-
straints are not applied, and anisotropic estimates of the
background error covariance structure are readily avail-
able. More importantly, the background error covari-
ances contain information about the PPBL and the ap-
propriate vertical extent of influence of a surface-layer
observation.

Accounting for uncertainty in model parameters,
which are ubiquitous in PPBL schemes, can also be eas-
ily accomplished with the EnKF. While model error in a
dynamical model may have unknown characteristics, it is
reasonable to expect that in a physical parameterization
scheme a large part of the error is related to poorly cho-
sen (empirically or otherwise) parameters that are static.
With the EnKF, stochastic distributions of PPBL parame-
ters (“constants” either physical or not) can be estimated
through correlation with observations. Each parameter
is treated stochastically, and carries a distribution in the
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ensemble that accounts for uncertainty in its value.
The efficacy of the EnKF in a PPBL, which has un-

known error-growth properties and potentially signifi-
cant model error, is unknown a priori. Analysis and ex-
perimentation are necessary to determine whether a use-
ful DA system is realizable. A season of mesoscale fore-
casts is examined to understand summer error-growth
characteristics in a PPBL. Then a 1-D PPBL is run off-
line from its mesoscale model parent, and observations
from a full model solution are assimilated via the EnKF
(Anderson and Anderson 1999) in an attempt to recon-
struct the PPBL state.

2. Variance-covariance structures of real-time PBL
forecasts over the Southern Great Plains

To understand the potential for a data assimilation sys-
tem operating on a PPBL during summer over the South-
ern Great Plains, we examine Weather Research and
Forecast (WRF) model forecast profiles for July-August
2002. The 48-h forecasts were run daily at NCAR on a
continental U.S. (CONUS) domain with horizontal grid
spacing 22 km and 28 vertical levels. Each was ini-
tialized at 00 UTC (7 PM LST). The WRF was con-
figured with the MRF PPBL scheme (Hong and Pan
1996), which includes a five-layer slab soil model (Dud-
hia 1996) and a surface-layer similarity scheme (Louis
1979) coupled with the PPBL nonlocal diffusion scheme.
A column located near 97 � 5

�
W, 35 � 2

�
N, in Oklahoma,

was chosen for evaluation, and the profiles were inter-
polated to a uniform vertical grid with ∆z � 100 m for
comparison with the results presented later.

The set of 48-h forecasts comprise an ensemble of runs
representing the summer climate of the WRF for the cho-
sen column. Ensemble spread (denoted σψ where ψ is
any state variable), or the square-root of variance across
the ensemble as a function of forecast lead time, is also
a measure of the variability of model states during the
entire period as a function of local time of day. Spatial
covariances or correlations computed from the ensemble
demonstrate the vertical coherence of structures in the
profiles, and may be used to estimate the potential impact



Figure 1: WRF ensemble standard deviation (spread) as
a function of height AGL at forecast lead time. Contours
of (a) σθ (0 � 1 K) and (b) σU (0 � 5 m s

� 1) are shown up to
4000 m.

of an observation at a given height above ground. These
calculations guide the interpretation of data assimilation
experiments presented later.

Ensemble standard deviation (spread) plots at forecast
lead times of 24 to 48 h (7 PM to 7 PM LST) are shown
in Fig. 1 for the state variables θ and U-wind (σθ and σU

respectively). The gridpoint at z � 0 m holds the screen-
height diagnostic variables at z � 2 m for θ (denoted θs)
and z � 10 m for U (denoted Us). Only the last 24 h of
the forecasts are shown so that the results are represen-
tative of the PPBL in the WRF instead of the Eta data-
assimilation system (EDAS), from which these runs were
initialized. The 24-h period also agrees with the DA ex-
periments presented later.

Plots of σθ (Fig. 1a) show that below 4000 m the tem-
perature varies more in the PPBL than it does in the free
atmosphere aloft, which is synoptically inactive. The
maximum at t � 39 h (10 AM LST), z � 1000 m, shows
large daily variability in the growth of the PPBL with
the morning onset of convection. Just before and during

sunrise (30-36 h), the σθ is lowest near the surface. Fig-
ure 1b shows that σU in the PPBL demonstrates a strong
diurnal dependence. During the day, when the PPBL is
in a convective regime, it is coupled to the surface and
the wind speeds are limited by the negative momentum
flux associated with rising parameterized thermals. Con-
versely, the early-morning PPBL is decoupled from the
surface because it is in a neutral or stable regime for most
of the night, leading to a maximum in σU .

To improve forecast skill, a DA system needs to uti-
lize observations to correct the regions with the fastest
growing errors. The regions of high (low) spread in
Fig. 1 are regions of fast (slow) error growth. Thus a
DA system should be designed to correct the regions of
high spread in the ensemble plots discussed above. This
can be accomplished by directly observing the regions
of high spread, or by observing regions that are well-
correlated with the regions of high spread. Correlations
with surface variables θs and Us are presented here.

Temperature is correlated with r � 0 � 8 to a maximum
height of approximately z � 2000 m in the late afternoon,
with the depth decreasing to a minimum just before sun-
rise (Fig. 2a). This behavior corresponds to the growth
and decay of the convective PPBL, but the correlation is
surprisingly strong through the night when the residual
layer is decoupled from the surface layer. From this we
expect that assimilation of θs under quiet synoptic condi-
tions can be productive nearly any time. But effective DA
should be the most difficult when the spread at the top of
the growing PPBL is maximized at t � 39 h (Fig. 1a).

The correlation of U with Us shows a similar diurnal
structure, but with greater deterioration at night (Fig. 2b).
The maximum extent of correlation at r � 0 � 8 is approx-
imately z � 2400 m for a short duration around t � 45 h
(4 PM LST). The strong correlation reduces rapidly as
the sun goes down and stays near the surface for most
of the night. While the temperature correlation is pos-
itive all the way to z � 4000 m, cor(Us,U) � 0 above
z � 3000 m at night, and surface wind observations are
not likely to help determine winds aloft.

3. Experiment

To test the efficacy of a surface-observation DA sys-
tem, the MRF PPBL scheme (hereafter “the model”) is
extracted from the WRF model and run off-line with a
perturbed-observation EnKF system. This approach fa-
cilitates an inexpensive investigation and a large statisti-
cal sample with a model that approximates the variance-
covariance relationships described in the last section.
The model is initialized with a random linear combina-
tion of 24-h forecasts from the set of WRF forecasts. Ini-
tialization at 24-h allows the PPBL to be a product of
the WRF forecast, rather than residual PPBL structure as



Figure 2: Correlation coefficients relating screen-height
forecasts to profiles of the same variable, as a function
of height AGL and forecast lead time. Contours of (a)
cor(θs,θ) and (b) cor(Us,U) are shown.

represented in its own cold-start initialization. The state
vector is propagated forward in time by the MRF PPBL.
External forcing, designed to account for 3-D dynamics
present in the WRF integration, but not in the stand-alone
PPBL, is provided by a time series that is consistent with
the initialization. The time series includes all state vari-
ables and radiative forcing, and is applied as a tendency
term over each 3-h period for which they are available.

The model is configured to run on 120 vertical grid
points with ∆z � 100 m and ∆t � 120 s. Each run is
integrated for 24 h corresponding to the 24-48 h forecast
period of the WRF.

The “true” state and its evolution, and the ensemble
used for the EnKF system, are also generated from the
WRF forecasts. Observations are extracted from a single
randomly-chosen forecast. Because the true state and its
evolution are not derived from the MRF PPBL as con-
figured off-line here, this is not a perfect-model experi-
ment. All the results presented are for N � 1000 member
ensembles and averaged over 20 random cases.

This model is not perfect, and its climatology will not
be exactly the same as the WRF climatology. Further-
more, all of the initial conditions and forcing time se-
ries are within the extrema set by the WRF runs, but the
ensemble is a more complete distribution. The clima-
tological mean of the model will be the same initially,
and the spread will be slightly smaller. As the forecast
progresses, the differences will slowly grow as both the
mean and the spread could be different. This behavior
was confirmed by comparing Figs. 1 and 2 to similar
plots generated from the ensembles of off-line model in-
tegrations. Error growth in this model is unconstrained
by anything except its climatology.

4. Application of the EnKF

We refer the reader to Burgers et al. (1995) or Ander-
son and Anderson (1999) for a treatment of the EnKF
algorithm, and examine the results of of assimilating 2-
m θ and specific humidity Q (θs and Qs), and 10-m wind
components (Us and Vs). Observations are extracted from
the truth run. EnKF updates occur every 3 h, and the first
update occurs at t � 3 h. The observations errors are as-
sumed to be uncorrelated with error variances 1 � 0 K2,
2 � 0 m2 s

� 2, and 1 � 0 � 10
� 9 g2 kg

� 2, for θs, (Us, Vs),
and Qs respectively, which are one order of magnitude
smaller than the ensemble spreads.

The EnKF can also be used to estimate the moisture
availability (M) by including it in the state vector x, and
allowing the correlation between the parameter and the
surface observations to update the distribution. The sen-
sitivity of PPBL schemes to M has been documented in
Troen and Mahrt (1986).

An easy way to evaluate the performance of the EnKF
DA system is to compare error growth of the constrained
and unconstrained ensembles. Constrained ensembles
are generated with the same initial conditions and ten-
dencies as were applied in the last section documenting
unconstrained error growth. The results are averaged
over the same 20 cases. A reduced error indicates that
the observations have a positive impact on the skill of
the forecast by spreading upward. In evaluating the per-
formance of the parameter estimation, we focus on the
PPBL and ignore the impact aloft.

The plots in Fig. 3 show the difference in ensemble-
mean error between the unconstrained (and with esti-
mated parameter M allowed to vary) and constrained
ensembles, where negative values (shaded) show an er-
ror reduction. The results demonstrate that the observa-
tions constrain the ensemble and reduce the error through
much of depth of the PPBL. For the state variables θ
and U the error at screen height is steadily reduced af-
ter t � 3 h, as expected, because it should converge to
the square root of the observation error variance. But



the error is also reduced on model layers above that and
within the PPBL.

The ensemble-mean error in U is also reduced, but
through a deeper layer than the θ error reduction. In par-
ticular, the variance maximum that could be seen just be-
fore sunrise in Fig. 1b is coincident with the maximum
error reduction in Fig. 3b. Eliminating the pre-sunrise
error maximum could have implications for larger-scale
moisture and pollutant transport associated with inertial
low-level jets.

Figure 3: Ensemble-mean error difference, between the
EnKF constrained ensemble and the unconstrained en-
semble, as a function of height AGL at forecast lead
time. The EnKF constrained ensemble includes stochas-
tic treatment of the moisture-availability parameter M.
Contours of (a) Potential temperature (θ, 0.1 K) and (b)
U-wind are shown up to 4000 m are shown.

5. Summary and conclusions

This paper documents experiments on the efficacy
of the EnKF approach to data assimilation and param-
eter estimation in a parameterized PBL. An analysis
of variance-covariance structures in the PPBL of WRF

model real-time forecasts over the Southern Great Plains
indicates regions of expected maximum error growth,
and correlation of PPBL state with near-surface observa-
tion locations suggest the potential for correcting them.
An imperfect off-line model was constructed with the
MRF PPBL scheme and random forcing derived from
the WRF forecasts. The model allows efficient experi-
mentation on data assimilation of synthetic surface ob-
servations and parameter estimation.

Results show that the surface observations, extracted
from a random WRF forecast, are effective at constrain-
ing the state of the PPBL and reducing ensemble-mean
forecast error. The regions of maximum error growth in
θ, which occur during transitions and the growth or col-
lapse of the PPBL, are almost eradicated. Similarly, the
early-morning U maximum, associated with low-level
jet structures, disappears when observations are intro-
duced. The improvement in Q (not shown) is not as
prominent, as was expected because of the weaker corre-
lation between surface observations and the moisture in
the PPBL.

Further error reduction results when the moisture
availability parameter is treated stochastically, with the
distribution updated at assimilation intervals with the rest
of the model state vector. These experiments are an at-
tempt to mitigate model error in the forecast, and the pos-
itive impacts suggest that it could be a viable approach.
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