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1. INTRODUCTION 
 

The microphysical aspects of the relationship 
between radar reflectivity factor Z  and rainfall 
rate R  are examined.  Three special modes that a 

RZ −  relationship may attain are revealed, 
depending on whether the variability of the 
raindrop size distribution is governed by variations 
of the drop number density, drop size, or a 
coordinated combination thereof with constant 
ratio of mean drop size and number density.  The 
number-controlled case results in linear RZ −  
relations that have been observed for steady and 
statistically homogeneous or equilibrium rainfall 
conditions.  Most rainfall situations, however, 
exhibit a variability of drop spectra that is 
facilitated by a mix of variation of drop size and 
number density, which results in the well-known 
power-law RZ −  relationships.   

Only few rainfall conditions result in physically 
meaningful relationships between Z  and R .  
Graphical ways to identify those situations are 
presented.  The mathematical basis is laid out in 
section 2, whereas a graphical interpretation 
thereof is given in section 3.   
 
2. MATHEMATICAL FRAMEWORK 
 

The raindrop size distribution (m-3 mm-1) can 
be described by a gamma function of the form  
  (1) ( ) ( )DDNDN Λ−= exp0

µ

where  (mm) is the drop diameter,  (mD 0N -3  
mm-(1+µ)) is a concentration scaling parameter,  

 (mmΛ -1) the slope coefficient, and µ  the 
distribution shape factor (e.g., Ulbrich 1983).  An 
exponential raindrop size distribution (e.g., 
Marshall and Palmer 1948) is obtained for 0=µ , 
in which case  (m0N -3 mm-1) becomes the 
intercept parameter.  In the limiting case of 

∞→µ , the gamma distribution approaches a 
Dirac δ -function — i.e., a monodisperse raindrop 
spectrum.  Thus, (1) represents a wide range of 
analytical forms for the raindrop size distribution.   
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The radar reflectivity factor Z  (mm6 m-3) and 
rain rate R  (mm h-1) are defined as  
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respectively.  The relation between drop diameter 
and its fall velocity (m s-1) shall be approximated 
by a power-law expression of the form  
 ( ) pDvDv 0=  (4) 
with the coefficients 778.30 =v  (m s-1 mm-p) and 

, as proposed by Atlas and Ulbrich 
(1977).  The power law (4) is the only functional 
form consistent with power-law relationships 
between rainfall integral parameters such as Z  
and  (e.g., Uijlenhoet 2001).   

To ease interpretation of subsequent results in 
microphysical terms, the coefficients  and 0N Λ  
are replaced by the raindrop number density  
(m

totN
-3), that is the total number of drops per unit 

volume of air  
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and the mass-weighted mean drop diameter  
(mm)  
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respectively, where use was made of (1) and the 
gamma function  
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Expressions of the radar reflectivity factor Z  
and the rain rate R  in terms of  and  are 
obtained by inserting (1) into (2) and (1) and (4) 
into (3), respectively, plus replacing  and 

totN

N
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0 Λ  by 
using (5) and (6), to yield  
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The relationship between the radar reflectivity 
factor and the rainfall rate is often expressed as a 
power law,  
  (8) βαRZ =
(e.g., Marshall 1969; Battan 1973).  There are 
different ways to obtain such a relationship.  For 
simplicity, we only consider the case of 
exponential raindrop size distributions ( 0=µ ).  
Detailed analyses based on gamma, exponential, 
and monodisperse drop size spectra are 
discussed in Steiner et al. (2003).  Solving (9) for 

 and substituting the obtained expression into 
(8), plus setting 

totN
0=µ  and using the numerical 

values of  and 0v p , results in  
55.270 ( ) RDZ m

33.2=  (11) 
On the other hand, solving (9) for  instead and 
using that expression in (8) yields  

mD

 63.1
63.0

128561 R
N

Z
tot








=  (12) 

Alternatively, Eq. (3) combined with (1) could be 
solved for either  or Λ , and the respective 
result substituted into the combination of (1) with 
(2).  The former approach, and using (6) to replace 

 by , results in (11) as well.  The latter 
approach, however, combined with Eqs. (5) and 
(6) to replace  by the raindrop number density 

 and mean drop size , produces  
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Equations (11)-(13) characterize three micro-
physically distinct RZ −  relationships.  For a 
linear RZ −  relation like (11) to be physically 

meaningful, the mean drop size  has to remain 
constant and the variability of the raindrop size 
distribution be entirely facilitated by variations in 
drop number density (number controlled case).  
Power-law 

mD

RZ −  relations (12) with exponent 
63.1=β  are the consequence of a constant drop 

number density , while the variability of the 
drop spectrum may be accommodated through 
variations in mean drop size (size controlled case).  
Finally, power-law 

totN

RZ −  relations (13) with 
exponent 5.1=β  are valid for a constant ratio 

totm N  — i.e., the mean drop size and drop 
number concentration may vary, albeit only in a 
coordinated fashion.  This latter case represents 
situations with constant  (constant intercept 
case), as may be seen from (5) and (6).   
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The infinitesimal possibilities of obtaining a 
 relation for combinations of mean drop size 

and number concentration easily explain the 
multitude of such relationships reported in the 
literature (e.g., Stout and Mueller 1968; Battan 
1973).   
 
3. GRAPHICAL INTERPRETATION 
 

It is noteworthy that independent of the form of 
the raindrop size distribution there appear to be 
three microphysical modes that result in physically 
meaningful (as opposed to purely statistical) 

 relationships.  This result is consistent with 
the one obtained by Uijlenhoet et al. (2003), which 
is based on a scaling-law formalism that doesn’t 
make any assumptions about the raindrop size 
distribution.  Smith and Krajewski (1993) arrive at 
a similar result for lognormal raindrop size 
distributions and a statistical rainfall model (Smith 
1993) based on the arrival rate and characteristic 
properties of raindrops.  Steiner et al. (2003) 
demonstrate that the variability of the raindrop size 
distribution is bound by either size-controlled 
(constant ) or number-controlled (constant 

) conditions, with conditions of a mixed control 
(constant ) embedded in between those 
extremes.   

Figure 1 shows the relationship between the 
drop number density  and the mass-weighted 
mean drop size  as a function of the intercept 
coefficient  and rain rate R  as determined by 
Eqs. (1) and (3)-(6) for 0 .  This key figure 
enables distinction of the three microphysical 
modes that the  relationship may attain.   

Linear  relations ( ), characterized 
by Eq. (11), have been found previously for so-
called equilibrium conditions in rainfall, where all 



variability of the raindrop size distribution is 
controlled by variations in raindrop concentration 
(e.g., List 1988).  Jameson and Kostinski (2001) 
call this condition statistically homogeneous rain.  
Equilibrium or statistically homogeneous rainfall 
conditions reflect a balance between drop 
collisions, coalescence, and breakup (e.g., Hu and 
Srivastava 1995).  If such conditions truly occur in 
nature, one might find them within the efficient 
warm-rain process dominated growth phase of 
intense tropical rainfall (e.g., hurricanes), severe 
and long-lasting mid-latitude storm systems (e.g., 
supercells), or maybe persistent heavy orographic 
rainfall.  Displaying raindrop size spectra 
information from such conditions in Fig. 1, one 
expects all fluctuations to take place along the 
vertical axis, while  remains approximately 
constant.   
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Figure 1.  Relationship between , , , 
and 

totN mD 0N
R  based on exponential raindrop spectra.   

 
The other limiting case, where all variability of 

the raindrop spectrum is controlled by variations in 
characteristic drop size, is described by (12), with 
a multiplicative factor of the RZ −  relation that 
depends only on the raindrop number density  
and an exponent 

totN
63β .  Such conditions can 

be recognized in Fig. 1 by fluctuations along the 
horizontal axis, while  remains approximately 
constant.  Evidence suggests that such situations 
may occur in dissipating convective cells (e.g., 
Carbone and Nelson 1978) or size sorting due to 
wind shear and/or turbulence (e.g., Gunn and 

Marshall 1955), although it seems that these 
conditions may not last very long and thus be 
rather rare.   

Equation (13) highlights the case of a power-
law relationship between Z  and R  with exponent 

5.1=β  and a multiplicative factor α  that 
depends both on the raindrop concentration  
and the mean drop size .  This type of rainfall 
is characterized by variations in raindrop spectra 
such that the ratio 

totN
mD

totNmD  (proportional to ) 
remains constant, which can be recognized in Fig. 
1 by rainfall variations following lines of constant 

.  This is essentially the kind of rainfall reported 
by Marshall and Palmer (1948) and many others 
since.   
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Provided that there are three special (physical) 
modes for the RZ −  relationship, one wonders 
about the microphysical and dynamic conditions 
that may produce these modes, and how the 
transition from one to another mode might be 
facilitated.  Such transitions are likely not smooth 
and may be marked by discontinuities in the 
raindrop size distributions ( -jumps), reflecting 
significant changes in the underlying microphysical 
growth processes.  An observed characteristic of 

-jumps, as originally pointed out by Waldvogel 
(1974), is that they occur for approximately 
constant rain rate.  Order of magnitude changes in 

, therefore, take place along the dashed lines 
in Fig. 1, highlighting that such changes are the 
result of modifications of both mean drop size and 
number concentration.  Microphysical processes 
associated with jumps to larger  (accompanied 
by a decreasing  and increasing ) are 
increased breakup of raindrops due to enhanced 
number of collisions or onset of riming, which 
tends to suppress aggregation and thus inhibit the 
formation of larger snowflakes that would melt into 
bigger raindrops.  Significant decreases in , on 
the other hand, are related to an increase in mean 
drop size and decrease in number concentration, 
which may be the result of increased coalescence 
and thus a rapid growth of raindrops and/or 
increased aggregation of snowflakes.  Not every 
drastic change in , however, qualifies as a 

-jump in the “classical” sense of Waldvogel 
(1974), where the rain rate remains approximately 
constant.   
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4. CONCLUSIONS 
 

Analytically it can be shown that there are 
three special modes that a RZ −  relationship 
may attain.  These three distinct modes are 



associated with conditions where the variability of 
the raindrop size distribution is controlled by either 
variations in drop number concentration , 
mean drop size , or a combination thereof in 
which the ratio 

totN
mD

totm ND  is constant.  The 
variability of the raindrop size distribution is bound 
by either size-controlled (constant ) or 
number-controlled conditions (constant ), with 
conditions of a mixed control (constant ) 
embedded in between those extremes.  Moreover, 
these three special modes represent physically 
meaningful 

totN
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0N

RZ −  relationships, in contrast to 
many empirically obtained RZ −  relations that 
are of a statistical nature.   

R

totN
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The three special modes of the Z −  relation 
can be graphically identified within a parameter 
space spanned by the drop number density  
and the mean drop size  (Fig. 1).  Moreover, 
those special microphysical conditions leave 
distinct footprints in this parameter space that are 
clearly different from the signatures associated 
with marked transitions ( -jumps) from one 
microphysical growth mode to another.   

Identification of the appropriate type of Z  
relationship (e.g., linear versus power law) can 
have a significant effect on the radar-based rainfall 
estimation.   
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