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1. INTRODUCTION 
 

Most current quantitative precipitation 
nowcasting (QPN) methodologies are 
deterministic in nature and convey little realistic 
information regarding the uncertainty in the 
forecast. For flood and streamflow forecasting 
applications it is important to understand and 
accurately represent this uncertainty (Smith and 
Austin, 2000). This will allow a greater deal of 
confidence in the use of precipitation forecasts for 
hydrological purposes. This paper presents results 
obtained using a stochastic Bayesian precipitation 
nowcasting scheme.  

The nowcast methodology utilises an integro-
difference equation (IDE) methodology and, as 
such, allows the use of other observed 
meteorological parameters (e.g. Doppler winds) as 
a constraint on the stochastic process. This 
produces a physically based statistical nowcast.  
The scheme produces a range of nowcasting 
solutions using a series of initial fields of radar 
reflectivity, resulting in a distribution of short-
period forecasts. This paper examines the nature 
and interpretation of the distribution of QPNs. 
Areal precipitation forecasts may be used as input 
to a simple lumped hydrological models to 
investigate the impact of the nowcast distribution 
on streamflow forecasts. This investigation will 
provide information on how forecast uncertainty 
can be propagated through such models, and how 
one may best handle distributions of QPNs of this 
nature in a hydrological context. 
 
2. METHODOLOGY 
 

The nowcast is based upon a Stochastic 
Bayesian scheme with an integro-difference 
equation (IDE) methodology. This allows the 
production of a distribution of nowcast fields 
through the stochastic parameterization whilst 
retaining physically realistic constraints by using 
the IDE formulation.  
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The methodology is described briefly in Fox et 

al (2003) and fully in Xu et al. (2003). 
Wikle et al. (2001) and Wikle (2003) showed 

that modeling complicated processes in such a 
framework can be made more efficient if one 
utilizes scientific information such as those 
suggested by governing partial differential 
equations (PDEs). That is, one uses the PDEs to 
inform the structure of the underlying process and 
parameter models in the hierarchical framework. 
This may be done in physical space as 
demonstrated by Wikle (2003) for the problem of 
modeling the spread of invasive species. 
Alternatively, in high dimensional contexts, the use 
of PDE priors in the spectral domain lead to 
computational simplifications. 

As shown by Wikle et al. (2001) for modeling 
tropical wind fields, such methods work well when 
there is a sound fundamental scientific basis for 
the choice of the PDE model. However, in many 
cases, such as the thunderstorm nowcasting 
problem, one knows that there are physically-
based spatial-temporal features such as diffusion 
and propagation, but the set of governing PDEs is 
either unknown or too complicated to be efficiently 
utilized in the stochastic framework. Thus, one 
seeks to consider alternative ways to efficiently 
model known qualitative dynamical features 
without direct specification of the underlying 
governing equations. The IDE framework provides 
such a specification. 

Although the PDE and IDE framework share 
the notion of continuous space, the IDE framework 
differs in that it is formulated in discrete time. 
There is a substantial literature on deterministic 
IDEs in the mathematical ecology literature (e.g., 
Kot et al. 1996. Although the IDE model has been 
considered in the statistical modeling of spatio-
temporal processes, as described by Wikle and 
Cressie (1999) and Brown et al. (2000, 2001), it is 
only recently that it has been recognized that such 
a framework can efficiently model relatively 
complicated dynamical processes. The key to 
modeling dynamical processes is the redistribution 
kernel. Kot et al. (1996) showed that such a 
framework can model diffusive wave fronts. 
Specifically, the shape and speed of diffusion 



3. PRELIMINARY RESULTS depends on the kernel width and tail behavior. In 
fact, Kot et al. (1996) showed that the 
deterministic IDE framework yields the same 
analytical solution as Fisher’s (1937) solution to a 
reaction-diffusion PDE for modeling the speed of 
propagation for a diffusive wave. More recently, 
Wikle (2001, 2002) demonstrated that the IDE 
framework can also model non-diffusive 
propagation (such as one would see with 
propagating features) via the relative displacement 
(i.e., translation) of the kernel. That is, as shown 
schematically in Figure 1, wider kernels imply 
greater diffusion. Furthermore, if the kernel is 
shifted (translated) relative to its initial location, 
then the propagation at that location at the next 
time is in the opposite direction of the shift and the 
speed of propagation is related to the magnitude 
of the shift (e.g., see Wikle 2002). 

 
The scheme uses six time-steps to initialise 

the nowcast model and then produces 1000 
nowcast sequences. This large number of 
nowcasts fields then allows the computation of the 
mean, or best-guess, nowcast and the variance of 
the mean. Thus, for each pixel, there is an 
estimated forecast of precipitation and an 
associated error. 

An example nowcast sequence is shown in 
figure 2. This nowcast was produced from 2.5km 
CAPPIS from 3rd November 2000 during the 
Sydney 2000 Forecast Demonstration Project (Fox 
et al. 2001). The example shows the forecast 
progression of a supercell thunderstorm as it 
approached the Sydney metropolitan area. This 
storm produced large hail, tornadoes and heavy 
rain leading to localised flooding. The nowcast 
retains high intensity features whilst providing an 
indication of the error associated with the 
predicted radar reflectivity. This could be 
converted to a rainfall intensity field. As can be 
seen, the uncertainty in the northern cell is 
locational, in that the largest variances are 
situated at the edge of the cell. However, the cell 
to the south has little uncertainty attached, and the 
cell just moving into the southern edge of the 
domain has a large uncertainty in the intensity. 
This latter is most likely due to a lack of 
information for the cycle of the system’s 
initialisation as the cell moved into the model 
domain. 

 Examples of shifting kernels are shown in 
figure 1. In this figure the upper panel shows the 
estimated propagation orientation suggested by 
the spatially varying kernels shown in the lower 
panel. 
 

 

Assuming that the distribution of nowcast 
precipitation rates for each pixel is normal then we 
can assign a complete probability distribution of 
predicted precipitation rates for each pixel at each 
time increment. In particular we can determine, for 
example, the 90% confidence interval and provide 
forecasters with an effective range of possible 
precipitation rates at a point. An example of this 
would be the peak reflectivity in the T+40 nowcast.  

Using a standard convective rainfall Z-R 
relationship the nowcast provides a 90% 
confidence interval of the rainfall intensity being 
between 26.7mm h-1 and 34.9 mm h-1, with a 
mean of 30.5 mm h-1. Although the validation of 
the nowcast probabilities is yet to be completed 
one can see the potential of such products for 
decision making in event oriented nowcast 
applications. Figure 1: Example of the shifting field (top panel) 

generated from the spatially varying kernels (bottom 
panel) for case shown in figure 2. 

 
       



 
 

Figure 2: Example of nowcast product. The left hand 
set of panels show the mean of the nowcast distribution 
for 10 minute time-steps out to T+60. Right hand panels 
show the variance of the mean nowcast field. The 
domain shown is 100km by 70km and the grayscales 
are in dBZ. 
 
4. DISCUSSION 

 
There are many other questions remaining to 

be explored. The assumption of normally 
distributed nowcasts at individual pixels may or 
may not be good, and may depend upon the 
structure and possible motion of the cell or cells 
being tracked. For example, if slight variations in 
cell position in early time-steps lead to divergent 
outcomes at later times then it is possible to 
produce skewed or perhaps even bimodal 
precipitation nowcasts. 

While point precipitation nowcasting is one 
aspect of the application of these nowcasts, the 
most powerful use should be hydrological. Using 
the pixel values over a catchment one can 
estimate, again, a best-guess and associated error 
in catchment rainfall. If one wishes to perform a 

simple lumped model assessment of future 
streamflow suitable for a small catchment, then 
one can use the best-guess catchment total 
precipitation and 90% confidence interval (or any 
other probability) to obtain the possible range of 
streamflows. Clearly one can aggregate nowcast 
precipitation over time in a similar manner, but this 
ignores any hydrological model induced errors. 
However, it leads to a mechanism by which these 
errors can be assessed and incorporated into a 
hydrological forecast. 

Using such probabilistic precipitation forecasts 
in a distributed hydrological model is not so 
straightforward. This is because errors in one grid 
box can propagate to another implying that the 
individual errors are not independent and therefore 
cannot be summed in the simplistic way as above. 

The authors intend to explore these issues in 
further work involving prolonged case studies and 
the more effective implementation of the IDE 
methodology. 
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