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1. INTRODUCTION 
     Recently, normalization of drop size distributions 
(DSD) became a tool to study the variability of DSDs in 
a systematic manner.  Sempere-Torres et al. (1994, 
1998: refer to as ST) described a normalization 
procedure based on the basic notion of scaling functions, 
power law relationships between moments of DSDs. In 
essence, this procedure states that if drop size is scaled 
by a factor, its number concentration is also scaled in a 
predetermined manner. Their proposed formula for the 
scaling DSD is  
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where ))(( dDDDNM i
i ∫=  is the ith moment of DSDs and 

1x )( β−= iDM  is the scaled diameter.  The normalized 
function )( 1xg  is called the general distribution function.  
This general expression summarizes all the previously 
suggested analytical expression of DSDs and clarifies 
the relation between these expressions and the power-
law relationships between moments of the distribution 
generally used.   
     Sekhon and Srivastava (1971) and Willis (1984) 
show the potential of the normalization of DSDs with two 
parameters, such as the characteristic diameter and 
number density.  But they assume a specific shape of 
DSDs (exponential and gamma DSDs). Recently, 
Testud et al. (2001; refer to as TT) expand their idea 
without any assumption on the functional form of DSDs 
and have proposed a double-moment normalization: 
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where mD  is the volume-weighted mean diameter, a 
particular characteristic diameter that is derived by 
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where CT is an arbitrary constant that is chosen as 
44/Γ(4). Testud et al. point out that the remaining scatter 
around the normalized function is below the noise level 
of the disdrometric data, suggesting that their two 
parameters, the third and fourth moments of the DSDs, 
are sufficient to capture all the discernable variability.  
      The purpose of this paper is to extend the ST single-
moment scaling normalization to a double-moment 
scaling normalization and establish an explicit 
relationship between TT and ST approaches.  
Furthermore, we will show the advantage and 
disadvantage of both normalization methods and that 
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the scaling normalization of DSDs is a general way of 
describing DSDs. 
 
2. A GENERAL DOUBLE-MOMENT SCALING DSD  
     A general form of ST normalization with two 
moments of DSDs can be derived by re-normalizing 

)( 1xg  with the jth moment of )( 1xg : 
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where 2x  is the scaled diameter and )( 2xh  the “second 
normalized” DSD.  In addition, we obtain the general 
multiple power law relationship among moments of 
DSDs: 
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Although we use jth moment of )( 1xg , the ith and jth 
moment of DSDs are necessary in the final form.  For 
detailed derivation and overall contents of this paper, 
see Lee et al. (2003). Interestingly, all scaling exponents 
disappear and only the orders (i and j) of the two DSD 
moments used in the normalization remain in this final 
form.  In addition, we have not assumed any functional 
form of shape of normalized DSDs that remains free 
and to be determined from observations. 
     In the single-moment normalization, a simple power 
law between any two moments is assumed.  The 
exponent of this power law is the function of scaling 
exponent β  [ β)(1

,1
in

inn MCM −+= ] and the coefficient is 

the nth moment of )( 1xg  [ 111,1 )(∫= dxxxgC n
n ].  Similarly, 

in the double-moment normalization, the coefficient of 
the multiple power law in (4) is now the nth moment 
of )( 2xh  instead of )( 1xg .  However, the exponent is 
purely determined by the orders of moments.  Therefore, 
in this approach the role of β  and the normalized 
general function g is now played by the two moments of 
the original DSD used in the normalization.  Thus the 
two moments should jointly contain all the information 
for the stratification of DSDs.   
     In addition, the normalization of TT is a particular 
case of the double-moment scaling normalization (3) in 
which the moments order 3 and 4 have been selected 
as the reference variables.  The normalization of TT can 
also be generalized using the generalized characteristic 
number density '

0N  and generalized characteristic 

diameter '
mD , leading to (3): 
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Thus, normalization by ST and TT are a particular case 
of (3) and are based on the same concept, scaling law 
of DSDs.  
 
3. R-Z RELATIONSHIPS  
     When we choose Mi=CuR (~3.67th moment of the 
DSD) and Mn=Z (6th moment of the DSD) in (4), the 
following relationship Z(Mj, R) is obtained: 
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where Cu is a constant that adjusts the unit.  In the 
single-moment scaling normalization, the coefficient a of 
Z=aRb is the 6th moment of )( 1xg  and the exponent b is 
related to the scaling exponent β by β33.21+=b .  In 
(6), the exponent of R-Z relationship depends on the 
choice of j.  We can also obtain ),( '

0 RNZ  and ),( ' RDZ m : 
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The explicit exponent in (7) and (8) does not imply any 
universal value.  It depends on the correlation between 

'
0N and R or between '

mD and R.  The explicit exponent 
on R, b=1.5, in (7) is close to the climatological value 
(Z=210R1.47 in Montreal, for example).  This implies that 
the correlation between '

0N  and R is low when a set of 
data is taken from a climatological variety of situations.  
For Marshall-Palmer DSDs, we expect 5.1aRZ =  since 

'
0N  is a constant and 21.0' RDm ∝ . For the equilibrium 

process, the evolution of DSDs is controlled by the 
number of drops with increasing R and the characteristic 
diameters remains as a constant. Thus, the 
proportionality between R and Z is expected.  For the 
strong aggregation between snow particles, '

0N  

decreases with increasing R and the dependence of '
mD  

on R is stronger than that expected in M-P DSDs, that is, 
the exponent f of f

m eRD ='  is larger than 0.21. Thus, the 
exponent of R-Z relationship should be larger than 1.5.                    
 
4. DATA ANALYSIS 
     The data used here are composed of 1208 one-
minute DSDs (over 20 hours) measured by the optical 
spectro-pluviometer (OSP: Salles et al. 1998).  DSDs 
are divided into convective and stratiform rain using the 
presence of bright band (BB) and horizontal gradient of 
reflectivity obtained from a near-by scanning radar. 

 
a. Compact representation of DSDs 
     The normalization of the set of these data is shown 
in Fig. 1 for the single moment (R) and Fig. 2 for the 
double moment (Mi and Mj).   
     The scaling exponent β is slightly smaller than the 
value of M-P DSDs, indicating the exponent of Z=aRb is 
less than 1.5.  The scatter of normalized DSDs in Fig. 
1a and the standard deviation in Fig. 1b (vertical bars) 
are quite large.  This shows the limitation of single-

moment scaling normalization in terms of compact 
representation of DSDs.  When all DSDs from different 
physical processes are normalized together, they do not 
collapse onto one normalized curve.  In other words, all 
the DSD variability cannot be explained by a single 
parameter. 
    In the double-moment normalization in Fig. 2a and b,  

( )2xh  is very similar to the ones reported by TT. In 
general, the scatter drastically decreases compared with 
the single-moment normalization, illustrating an 
advantage of double-moment normalization in terms of 
a compact representation of DSDs. The standard 
deviation (SD: thick vertical bars in Fig.2b) is still larger 
than that from the statistical noise (lighter vertical bars 
next to SD) derived by assuming Poisson fluctuations 
due to undersampling.  This can be explained by two 
facts: 1) the possible physical variability that cannot be 
described by this normalization and 2) underestimation 
of the statistical noise by the Poisson process.   
     The degree of the scatter in normalized DSDs is 
quantified in terms of the standard deviation of fractional 
error in the estimation of various moments with average 
normalized DSD ( )2xh . Fig. 3 shows results from 
various combinations of two moments used for the 
normalization.  Not surprisingly, when two consecutive 
moments are used, the error is almost zero for moments 
close to the ones used for the normalization due to the 
self-consistency constraints.  When the order of the two 
moments used for the normalization is lower (higher), 
the error is smaller at lower (higher) moments. The 
minimum is broader when the order is higher. This 
simply indicates that the slope of the DSDs has less 
variability at the larger drop sizes.   
     When reflectivity factor )( 6MM j =  and another 
moment )( iM  are used for the normalization the 
standard deviation of the fractional error of Fig. 3b is 
obtained.  Again not surprisingly, there are two minima 
(zero) in the error.  As the order i is lower, the error at 
lower (higher) moments decreases (increases).  When 
the order of two moments is far from each other, the 
overall error is much lower and the error between two 
moments slightly increases. However, R (n=3.67) is 
estimated always with a precision better than 10%.  
Since reflectivity factor is directly measured from radar, 
in the application to radar remote sensing we prefer to 
fix the one moment as reflectivity factor.   

 
b. Connection between scaling normalizations and 
physical processes. 
     We now compare the single moment normalization 
with the double-moment normalization on the data 
stratified according to precipitation types (stratiform and 
convective rain).  This comparison provides an idea of 
the feasibility of both normalizations to identify different 
precipitation types. 
      Fig. 4a shows the weighted total least square 
regression (WTLS: Amemiya 1997) of R and Z for the 
two types of precipitation. Although the points are 



weakly separated, the difference in the two regressions 
is statistically significant.  Note the significantly different 
exponent. Fig. 4b shows the exponent )(nγ  of the 
power-law relationship [ )(

,1
n

nn RCM γ= ] between R and 
all other moments of the indicated order.  Again, the two 
regression lines are clearly distinctive for the convective 
and stratiform rain.  The slope of these two regression 
lines defines the scaling exponent β  of single-moment 
normalization for the two populations.  

     The average normalized DSDs )( 2xh  in Fig. 5a are 
remarkably stable, indicating that in this case stratiform 
and convective rain do not generate distinctive shapes 
of DSDs.  )( 2xh  is slightly different from the normalized 
exponential DSDs. These DSD shapes are quite 
consistent with those of TT. The next question is how 
well two moments or '

0N and '
mD  jointly contain 

information on the scaling exponent β  that nicely 
separates the two rain regimes in the single-moment 
normalization.  TT showed that '

0N and '
mD from the two 

regimes of tropical rain are well separated so that they 
are good indicators for the classification.  In Fig 5b. , we 
see the correlation between '

0N and '
mD .  The separation 

of the two types of precipitation in the ( '
0N , '

mD ) space is 
poor. Convective rain shows no correlation 
(determination coefficient 2r =0.01) and wide distribution 

with an upper limit of '
0N  at 2'

0 103xN =  m-3mm-1. Some 
points from convective precipitation are mixed with 
those from stratiform rain.  
 
5. THE FUNCTIONS )( 1xg , )( 2xh  AND A SCALING 

MODEL DISTRIBUTION. 
    From original generalized gamma DSD suggested by 
Auf der Maur (2001), we obtain the following inherent 
scaling property and the normalized form of generalized 
gamma DSDs.    
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µµµ,2, and 
'

2 / mDDx = . Thus, the generalized gamma DSDs also 
satisfies scaling properties.  Since all naturally occurring 
DSDs can be reasonably well described by the 
generalized gamma DSD, this suggest a very general 
description of all types of DSDs within the scaling 
framework. 
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Fig.1: Single-moment normal 
-ization on observed DSD 
data.  (a): Scattergram of all 
normalized DSDs with Mi=R.  
An exponential adjustment is 
shown as dashed line.  (b): 
The average ( )1xg  of the 
data points in (a) with bars 
(dark solid line) indicating 
standard deviation. 
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Fig. 2: Two moment normal -
ization on the observed DSD 
data.  (a): Scattergram of all 
normalized DSDs with Mi=M3 
and Mj=M4.  An exponential 
adjustment is shown as 
dashed line. (b): The 
average ( )2xh  of the data 
points in (a) with dark vertical 
bars indicating standard 
deviation. The standard 
deviation due to the 
statistical fluctuation is 
shown as the less dark 
vertical bars. 
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Fig. 3: (a) Standard devia-
tion of the fractional error 
(SDFE) in the estimate of 
the nth moment from the 
average normalized drop 
size distribution )( 2xh  
when the indicated two 
consecutive moments are 
used for the normali-
zation.  (b) Same when 
reflectivity and any other 
moment are used for the 
normalization 
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Fig. 4: (a) R-Z WTLS 
regressions for stratiform 
and convective rain. (b) 
Exponent )(nγ of =nM  

)(
,1

n
nRC γ  as a function of n.  

The scaling exponent β  is 
determined by the slope in 

)(nγ  vs n [ ++= nn ()( αγ  
β)1 ]. 
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Fig. 5 (a) Comparison of 
)( 2xh  from different rain 

regimes.  The normalized 
exponential DSD is also 
shown as the long dashed 
line. Note the remarkably 
stable shape.  (b): 
Distribution of point in the 
( '

0N , '
mD ) space. 

  

6. CONCLUSIONS 
     We have shown here that the ST’s and TT’s 
formulations of normalized DSDs are particular cases of 
the general scaling normalization presented here in 
some detail.  No functional form of DSDs is imposed in 
the normalization. Therefore, the general scaling 
normalization can reveal any stable shape of normalized 
DSDs. The single-moment scaling normalization applied 
after a stratification of DSDs according to a likely 
dominance of a given microphysical process shows that 
the scaling exponent β  is a clear indicator of the 
processes. However, in the double-moment 
normalization, the separation of '

0N and '
mD  that was a 

good indication of two rain regimes in TT is poor in our 

data set.  The generalized gamma DSDs also have the 
scaling properties, indicating the derived double-
moment scaling DSD formulation is a general way of 
describing observed DSDs. 
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