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1. INTRODUCTION 
     The main purpose of this paper is to underline the 
inherent observational problems in current disdrometric 
data and their effects. We suggest a robust filter that 
minimizes these problems. The spurious variability in 
relationships between moments of the distributions 
generated by analysis methods is illustrated. 
 
2. OBSERVATIONAL PROBLEMS  
     Disdrometric measurements are affected by the 
various sources of noise due to small sampling volume 
(statistical undersampling noise), drop sorting 
(observational noise), and instrumental uncertainty 
(instrumental noise).   
     The instrumental uncertainties of disdrometers are 
poorly known.  Sensitivity to the exact place within the 
sensor area or volume, the effect of strong winds, 
calibration errors, etc., all introduce instrumental noise.  
Specifically in our disdrometer, precipitation occurrence 
sensing system (POSS), the underestimation of number 
density is expected due to the way Doppler spectra are 
inverted to obtain DSDs.  This instrumental noise can be 
eliminated by averaging ten 1-min DSDs.   
     The usually small sample volume is an additional 
source of statistical noise, which is usually, and wrongly , 
estimated assuming a homogeneous Poisson process.  
However, the sampling volume of POSS is three orders 
of magnitude larger than another disdrometers. Thus, 
the statistical undersampling noise is relatively small 
compared to another disdrometer.   
     We will devote a particular attention to the 
observational noise, the importance of which was 
hitherto overlooked.   
     A one-minute time interval may appear to be 
sufficiently short for obtaining a quasi-instantaneous 
sample of a DSD.  However, when the sample is taken 
in highly variable precipitation in the space-time domain, 
the small drops within the sample may come from a 
cloud region where the rain intensity and the dominant 
microphysical processes may be quite different from the 
one from which the large drops originate. 
     Consider for example, a rain rate that is increasing 
as viewed by an observer at the disdrometer site.  It is 
clear that even if all the instantaneous DSD were 
exactly exponential everywhere in the storm at the 1 km 
height of radar observations, the 1-min DSD sample will 
have a deficit of small drops and an excess of large 
drops because the small and large drops come from a 
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region of low and high rain rate, respectively.  As the 
storm moves over the distrometer, the observed 1-min 
DSD samples will assume various shapes depending on 
the distribution of the reflectivity. Thus, it is not possible 
to establish the relationship between physical processes 
and the resulting DSDs when observational noise 
masks the microphysical variability.  Observational 
noise also generates scatter in the relationships 
between parameters defined by the DSDs, such as rain 
rate, reflectivity, differential reflectivity, etc.  In other 
words, because of drop sorting, the scatter between R 
and Z derived from observed DSDs on the ground 
increases with the spatial rain structure at the scale of 
several kilometers, although there could hypothetically 
exist perfect power law between Z and R within 
instantaneously sampled radar volumes. 
     We will now demonstrate that drop sorting increases 
the variability in DSDs by tracing back the trajectories of 
observed drops.  We assume a uniform horizontal wind 
and ignore turbulence.  Drop sorting is therefore only a 
function of the differential travel time of the drops from 
the cloud base to the ground and of the speed of the 
storm.  We calculate the differential travel time at 34 
diameter intervals (channels) of the POSS disdrometer 
using the terminal fall velocities. Then, from a time 
series of DSDs on the ground, we reconstruct the DSDs 
at 1 km by advecting upwards and re-arranging the 
number concentration in each channel.   
     Fig. 1 show the difference of correlation coefficients 
between moments and Z or R from the new re-
constructed DSDs at 1 km and from original observed 
DSDs on the ground. The improvement in correlation 
coefficients reflects a decrease of the scatter between 
rainfall related variables.  That is, the observational 
noise generated by drop sorting is diminished by our 
backward advection. This improvement is more 
pronounced in the low moments because drop sorting is 
more important in smaller drops that have longer travel 
time and a stronger dependence of fall speed with size 
than larger drops.  The negative values may indicate the 
failure of the assumption of uniform wind and of no 
turbulence.  We have chosen only stratiform systems in 
which the effect of non-uniform wind can be minimized. 
     Drop sorting occurs everywhere in space and when 
coupled with the spatial variability of intensity, shapes 
the DSDs as much as the microphysical processes.  
When observations are used to understand 
microphysics, drop sorting distorts the DSDs.  Moreover, 
drop sorting affects disdrometric observations over 
scales larger than that of the radar sample volume, 
making the R-Z relationships noisier than actually seen 
by radar.  Thus, the difference between the radar and 
disdrometer sampling of DSDs extends beyond the 
difference in sampling volume. 



3. FILTERING DSD OBSERVATIONS   

     The challenge is to filter out noise so that we can 
concentrate on the signal.  Some effects of filtering DSD 
data were considered in the past.  Joss and Gori (1978) 
showed that random averaging of DSDs rapidly leads to 
an exponential distribution. Time-sequential averaging 
results in a slower convergence to the exponential form.  
Here we are not so much concerned with a particular 
shape of the distribution but rather with its variability 
around a stable shape, and in particular as it reflects on 
the stability of the R-Z relationship during a physically 
uniform situation.  As in Joss and Gori (1978) we take a 
record of one-minute DSDs extending over several 
hours and average the distributions over a variable 
number (from one to 120) of  
     a) random samples (random averaging),  
     b) samples sequential in time (time averaging), and 
     c) samples sequential in either Z or R (that is, SIFT 

with either R or Z as the intensity parameter).  
The basic steps of a SIFT procedure can be 
summarized as follows: 
     a) Z (or R) is calculated from 1-min DSDs for a time 

window W.  
     b) The DSDs are then ordered in increasing Z (or R). 
     c) A moving average of M consecutive ordered DSDs 

is performed to derive filtered DSDs. 
From these filtered DSDs, we calculate Z and R to 
obtain the coefficient and exponent of Z=aRb.  The 
window size W and averaging size M are flexible.  Fig. 2 
shows the result for a case as a function of the 
averaging size, M.  As revealed by inspection of radar 
data this case (5-6 May 1998) is a typical quasi-
homogeneous stratiform case with a very uniform bright 
band.  W=111 min and variable M are used. The least-
square regression is performed on R vs Z in log-log 
coordinates.  However, we express the relationship in 
the conventional Z-R form but call it a R-Z relationship.  
χ2 is the sum of the squared difference in log10R and is 
normalized by the number of points.  Panels (c) show 
that averaging samples that are sequential in time (solid 
line) is least effective in reducing the scatter in the R-Z 
relationship.  The other averaging methods are about 
equally effective in reducing the variability.  However, as 
shown in panels (a) and (b), SIFT, with reflectivity as the 
grouping parameter, is the most effective in stabilizing 
the R-Z relationship with averaging size.  We prefer 
filtering by intervals of reflectivity since this is the 
parameter that is measurable by radar.   
     Similar analyses for 15 quasi-homogeneous 
stratiform storms (all with well defined bright bands) with 
precipitation for at least 80 minutes show similar results 
as in Fig. 2.  Thus, we could conclude averaging ten 
one-minute samples is enough to drastically reduce the 
variability and stabilize the R-Z relationship.  With SIFT 
we eliminate a considerable portion of the spurious DSD 
variability due to the manner of sampling and due to 
instrumental noise. 
     The examples illustrated in Fig. 2 are based on long 
time records.  With a time window W of one hour the 
reduction in the variability of the R-Z relationship with 

the number of averaged samples is less pronounced, 
but quite appreciable nevertheless.  We will average 
groups of 10 DSDs samples of sequential intensity 
taken within a one-hour period.  As an example, we take 
a sequence of DSDs of the case in Fig. 2.  Here, two 
windows, W1=2340–0039 UTC and W2=0040-0130 
UTC, are applied.  The averaging size is fixed as M=10 
1-min DSDs.  Figs. 3a and b show the R-Z scattergram 
before and after applying SIFT on POSS data taken 
over this period.  It is clear that the uncertainty is greatly 
reduced by SIFT and that the R-Z relationship is almost 
deterministic.  The two time windows lead to the same 
R-Z relationship.  Furthermore, if only one time window 
is taken over the entire two-hour period for SIFT a 
similar R-Z relationship is obtained.   
     Another example of the effect of SIFT is shown in Fig. 
4.  For the same case in Fig. 3, three stages of data 
analysis are shown:  
     (a) one-minute DSDs, 
     (b) normalized DSDs using the single-moment 

normalization (Sempere-Torres et al. 1998), and 
     (c) normalized DSD after filtering data by SIFT as in 

Fig. 3b. 
As we can see, SIFT greatly reduces the variability of 
the observed DSDs and the normalization effectively 
collapses all DSDs into a well-defined normalized 
function )( β−DRg  with little remaining scatter around a 
mean curve.  It is interesting to note that SIFT helps 
mostly by compacting points at the two extremes of the 
distribution and particularly at the small drops end.  
Since the drop sorting dominantly affects DSDs at small 
sized drops, this is compatible with the possibility that a 
good deal of the variability comes from drop sorting 
through differential fall speed.  
 
4. UNCERTAINTIES DUE TO THE REGRESSION 

METHOD 
     Usually, either a linear or a nonlinear least square 
method is used to investigate the effect of variability on 
the R-Z relationship.  The dependent and independent 
variables are selected and the best fitted equation is 
obtained by minimizing the sum of the squared 
discrepancies of the dependent variable.  When we 
derive the relationship from measurements, both R and 
Z are affected by measurement errors as described in 
Section 2.  Therefore, the relationships that are derived 
by either way are subject to these errors, thus providing 
an additional spurious variability.  An analysis technique 
that allows errors in both variables and leads to a true 
relationship is the method of “weighted total least 
squares” (Amemiya 1997).   
     Fig. 5 illustrates the spurious variability due to the 
analysis methods and the effect of filtering on this 
variability. For raw data (averaging size M=1), the 
relationships deduced from the Z vs R and R vs Z 
regressions are significantly different from each other 
and from the one derived with WTLS.  The cause is the 
large scatter that is a combination of spurious variability 
from observational and sampling noise, and possibly, of 
some non-homogeneity of the physical process during 
the period. Therefore, unless this variability is eliminated, 



the derived relationships are subject to an uncertainty 
that depends on the degree of scatter, distorting 
conclusions derived from disdrometric data.  
     After applying filters, the discrepancy between the 
regression methods gradually decreases with averaging 
size although the three filters show distinctive behavior.  
Once SIFT is performed on DSDs, the R-Z power-law 
relationship is better defined in the sense that there is 
an appreciable reduction of scatter around a best-fit line 
as shown in Fig. 5. Time averaging shows a slow 
convergence with averaging size, partly because this 
filter was the least efficient in reducing the scatter 
around the best-fit line.  Although random averaging is 
an efficient way for reducing the scatter, the 
convergence is comparable to time averaging.  This can 
be explained by the fact that, unlike SIFT, random 
averaging reduces the dynamic ranges of Z and R by 
combining all different intensities that are not correlated.  
     A summary of the above analysis for 15 quasi-
homogeneous storms shows that when no filter is 
applied and the regression is done in R vs Z, the 
average fractional difference is 17% and 14% for a and 
b (19% and 12% with Z vs R regression) with respect to 
WTLS.  Using the climatological relationship in Montreal 

47.1210RZ =  as a reference, we can expect the following 
range, a=174~250 (-17%~19%) and b=1.29~1.68 (-
12%~14%).  Using this range, we obtain the following 
range of gamma parameters, µ =-1.2 ~ 3.4 and N0=103 
~ 1010 m-3cm-1-µ.  This result implies that the variability 
due to the regression methods explains over 40% of 
“natural variability” claimed in the literature.   
 

5. CONCLUSIONS 
     Disdrometric measurements are affected by the 
sources of noise due to small sampling volume, drop 
sorting, and instrumental limitations.  We developed a 
filtering technique, Sequential Intensity Filtering 
Technique (SIFT) to effectively eliminate these noise 
while maintaining the physical variability of DSDs.  In 
SIFT, the ten averaged samples, consecutive in 
intensity, are not consecutive in time.  Thus, the 
correlated spatial structure of rain does not add to the 
variability of the average.  Since the drop sorting effect 
is related with intensity gradients, by choosing 
decorrelated samples we also take decorrelated 
gradients.  In this way the sorting effect is first 
randomized and then, at least partially, averaged out. 
     We point out that the spurious DSD variability makes 
the conclusions from DSD analyses sensitive to the 
various analysis methods.  The uncertainty in the 
regression method could explain 40% of “natural 
variability” of DSDs claimed in the literature. This 
uncertainty is negligible after applying SIFT. 
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Fig. 1:The improvement (rco-runco) of 
correlation coefficients by applying 
a simple correction method for drop 
sorting. The subscript “co” indicates 
that the correlation coefficient r is 
calculated from re-constructed 
DSDs at the cloud base by applying 
the correction method while “uncor” 
means that r is from uncorrected 
observed DSDs on the ground. r is 
calculated between Z and moments 
Mn of DSDs in (a), and between R 
and Mn in (b).    
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Fig. 2: Illustration of the sequential intensity filtering technique (SIFT) for the case of  5-6 May 1998.  The x-axis 
represents the size of moving average (M).  Comparison is done with random average (dashed-dotted line) and time 
average (solid line).  Exponent and coefficient of a climatological 47.1210RZ =  are indicated by the long dashed line.  
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Fig. 3: (a) Scattergram of the R-Z 
relationship for the raw 1-min data 
for the period 2340 on 5 May 1998 
to 0130 UTC on 6 May 1998.  (b) 
The same after averaging ten 1-min 
DSDs of consecutive intensity 
within an one hour period.  Two 
windows, W=2340–0039 UTC and 
W=0040-0130 UTC, are used for 
applying SIFT.  The size of moving 
average within a window is fixed at 
M=10 1-min DSDs.  
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Fig. 4: (a) Observed DSDs during 2340 UTC 5 May 1998 to 0130 UTC, 6 May 1998.  (b) Normalized DSDs for the 
observed DSDs with one-moment.  (c) As in (b) but after applying SIFT with averaging ten one-minute DSDs of 
consecutive reflectivity  within an hour (M=10 1-min DSDs, W=1 hour).   
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Fig. 5: R-Z relationships from three different regression methods as a function of averaging size for three methods of 
DSDs filtering.  The Z vs R regression method is the usual least square minimization of the sum of the squared 
discrepancy of Z while the sum of the squared discrepancy of R is minimized in the one indicated by R vs Z.  The 
weighted total least square (WTLS) is the optimum method for finding the best fitted line by considering measurement 
errors.  Results from SIFT with R as a grouping parameter is not shown.      
 


