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1. INTRODUCTION 
 

Accurate rain estimation from radar 
measurements has been a difficult task due to the 
variation of raindrop size distribution (DSD), lack of 
accurate axis ratio model, measurement error, clutter, 
and so forth. Previously, rain estimation from weather 
radars has been largely dependent upon empirical 
relations such as R-Z relations.  The development of 
polarimetric radar makes accurate rain DSD retrieval 
and rain rate estimation possible. Polarimetric radar 
observables: ZDR and KDP depend on the shape of 
raindrops while the raindrop shape is directly related 
to drop size, and hence contain the information about 
rain DSD, and are used to retrieve rain DSDs and 
improve rain rate estimation.  

Recently, the constrained Gamma rain DSD 
retrieval was developed [Brandes et al., 2002&2003a; 
Vivekanandan et al., 2003; Zhang et al., 2001]. Since 
KDP has large measurement error and poor range 
resolution, the constrained Gamma DSD method uses 
radar measured Z, ZDR, and an observed relation 
between the shape and slope parameters to retrieve 
the parameters of Gamma rain DSD, and then 
calculate rain parameters such as rain rate and 
median volume diameter.   

In this paper, we summarize the development of 
the constrained gamma DSD model for rain estimation 
from polarimetric radar measurements. Justification for 
using the constrained Gamma DSD retrieval is 
provided. The verification and application of the 
retrieval algorithm is described by Brandes et al. 
(2003a&b). It is shown that the constrained Gamma 
DSD retrieval improves rain estimations from a pair of 
remote measurements, such as, reflectivity and 
differential reflectivity, and it reduces the bias and 
standard error in retrieved rain parameters.  
 
2. FORMULATION AND JUSTIFICATION 
  

 Polarization radar measurements include 
horizontal reflectivity (ZH), vertical reflectivity (ZV), 
differential reflectivity (ZDR), specific differential phase 
(KDP), linear depolarization ratio (LDR), and co/cross-
correlation coefficients. Among them, reflectivity and 
differential reflectivity are the most important in rain 
estimation. They depend on rain DSD and the 
scattering amplitudes as follows: 
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where fa,b(D) are backscattering amplitudes in major 
(a) and minor (b) axis (corresponding to horizontal and 
vertical polarizations), Kw is the dielectric factor of 
water, λ is the wavelength, D is the equivolume 
diameter and N(D) is the particle size distribution. 
Because the difference between the scattering 
amplitudes at the two polarizations depends on the 
raindrop shape which is related to raindrop size, two 
issues for accurate rain estimation are (i) the raindrop 
axis ratio relation and (ii) the rain DSD model.  
 
2.1 Raindrop Axis Ratio 
 

Recent studies have shown that raindrop shape is 
more spherical than the previously used equilibrium 
shape. A number of the direct measurement of 
raindrop shape were fitted with a smooth polynomial 
function (Brandes et al., 2002) to obtain  

 
r=-0.000249D4+0.00503D3–0.0364D2+0.0251D+0.995  

(3) 
where r is the drop axis ratio and D is the  equi-volume 
drop diameter measured in mm. The solid line in 
Figure 1 shows the proposed axis ratio relation plotted 
as a function of the equi-volume drop diameter, and 
the dashed line is the corresponding equilibrium axis 
ratio 1.03 0.062r D= −  proposed by Pruppacher and 
Beard (1970). Obviously, the linear relation cannot 
capture the non-linear nature of the axis ratio for 
raindrops, especially for those size between 1 to 2 
mm, that mainly contribute to rain rate.  

Instead of using a variable slope, we write the 
axis ratio as a sum of its mean represented by (3) and 
a fluctuation r1 as 

1r̂ r r= + .        (4) 
It is reasonable to assume the fluctuation is 
proportional to the difference of the mean shape from 
a sphere (1-r). A standard deviation of 0.2 
corresponds to a uniform distribution between 0.35± . 
A range of the axis ratio of 0.35(1 )r r± −  is also 
shown in the figure that covers most observations.  

A Taylor series expansion of the scattering 
amplitudes yields  

1, , ,
ˆ (1 )a b a b a bf f g r= +      (5) 

where gh,v is an oscillation correction term whose 
simple form can be derived based on Rayleigh 



 

scattering.  Then, the relative errors of 2

,
ˆ| |a bf  and the 

ratio are estimated and shown in Fig. 2. It shows that 
the errors of radar reflectivity and differential 
reflectivity caused by (20%) axis ratio error are small. 
Considering that the oscillation in raindrop shape may 
occur in various directions and the large number of  
drops in a radar sample volume, oscillation effects 
tend to cancel each other. Therefore, the error due to 
the axis ratio fluctuation can be neglected as long as 
the mean axis ratio is correctly modeled. 

 
2.2 Rain DSD Model 
 
      Ulbrich (1983) suggested using the Gamma 
distribution: 

0( ) exp( )N D N D Dµ= −Λ    (6) 
to represent rain DSD.  The Gamma DSD with three 
parameters (N0, µ, and Λ) is capable of describing 
variety of raindrop size distributions and has been 
widely accepted by the radar meteorology community.  
The problem is how to determine the DSD parameters 
from limited remote measurements such as Z and ZDR 
and accurately estimate rain.  

Analysis of DSD data collected in Florida during 
the summer of 1998, as shown in Fig. 3, revealed a 
high correlation between µ and Λ, suggesting that a 
useful µ - Λ relation could be derived [Brandes et al., 
2003a; Vivekanandan et al., 2003; Zhang et al., 2001], 
given as 

 20.0365 0.735 1.935µ µΛ = + + .  (7) 
The relation also holds for DSD observations collected 
in Oklahoma. The relation simplifies the three-
parameter Gamma DSD to a two-parameter model 
that is easy to retrieve from remote measurements. It 
has been shown (Zhang et al., 2003) that the relation 
(7) is not purely error effect (Chandrasekar and Bringi, 
1987). 

The µ -Λ relation suggests that a characteristic 
size parameter such as D0 and the width of mass 
distribution (σm) are also related. In Fig. 4, we plotted 
σm versus D0 for the DSD measurements. The 
converted relation from the  (7) relation is also shown 
as well as that for fixed µ values (0, 3, 6).  The 
converted relation from the µ - Λ relation agrees well 
with the directly fitted σm - D0 relation.  The results 
from a fixed µ values agree with the measurements 
only for a certain range of DSDs.  The results for µ =0 
agree with DSD measurements with a large D0 but 
don’t agree with that for small drops.  Results for µ = 6 
agree with that for small drops but not for large drops.   
Certainly µ = 3 (currently used by many algorithms) is 
a good mean value, but it is not as good as the µ - Λ  
relation for the whole range of observations. 
 
2.3 Derived Rain Estimators 
 

With the constrained relation (7) for the Gamma 
DSD and the fixed shape-size relation (3), the DSD 
shape parameter µ uniquely determines ZDR. Hence, µ 

can be retrieved from measured ZDR , and Λ and N0 
are calculated subsequently from the relation (7) and 
ZH. [Zhang et al., 2001]. Rain rate and median volume 
diameter are then easily calculated from the retrieved 
rain DSD.   

For convenience in retrieving rain parameters, 
simple relations are derived based on the constrained 
Gamma DSD model.  We calculate rain parameters 
and radar measurements (ZH and ZDR) for Λ  in a 
range from 0.5 to 13 with a fixed N0.  Ratios of Nt and 
ZH are uniquely determined by ZDR for a constrained 
Gamma rain DSD. After taking the logarithm of the 
ratio and applying a polynomial fit, as shown in Fig. 5, 
we obtain 

    
20.728 2.0662.08 10 DR DR
Z Z

t HN Z −= × ×    (8) 
Similarly, we have 

   
20.165 0.89737.60 10 10 DR DR
Z Z

HR Z −− += × × ×   (9) 

 3 2
0 0.171 0.725 1.479 0.717DR DR DRD Z Z Z= − + + (10) 

   2
0 06.084 29.85 34.64D Dµ = − + .   (11) 

It is noted that the above relations are fundamentally 
different from that fitted from simulated or measured 
datasets.  Eq. (8) - (11) are unique for the given axis 
ratio relation (3) and the issue of data selection or rain 
DSD simulations was not involved in the derivation. 
 
3. RAIN DSD RETRIEVAL  
 

Data used to compare the direct solution of the 
DSD parameters Eqs. (1), (2), (3), (6) and (7) and that 
from polynomial relations (8)-(11) were collected in 
east-central Florida during the summer of 1998 in a 
special experiment (PRECIP98) to evaluate the 
potential of polarimetric radar for estimating rain in 
tropical environment as described by Brandes et al. 
(2002).  
      Instead of using statistical comparisons such as 
scatter plots or histograms, we show results with 
instantaneous comparison. Fig. 6 shows a time series 
comparison between video-disdrometer measurement 
and radar retrievals using the constrained Gamma 
model.  Both the retrievals by direct solution for DSD 
parameters and that from the derived estimators (8)-
(11) are shown. Both retrievals agree with the in-situ 
measurements well not only for rain rate but also for 
other DSD parameters Nt, µ, D0. Further comparisons 
and complete verification are given by Brandes et al. 
(2003 a&b). 
 
4. SUMMARY AND DISCUSSIONS 
 

We developed a constrained-Gamma rain DSD 
retrieval algorithm  based on (i) a fixed raindrop axis 
ratio relation (3) and (ii) a µ - Λ relation (7) for the  
Gamma DSD model. These constraining relations 
allow stable and reasonable retrievals of rain DSD 
parameters from radar measurements. Simple rain 
parameter estimators are derived using polynomial 
fitting. The radar estimated rain rate, raindrop size and 



 

DSD parameters (Nt and µ) agree well with the 
disdrometer measurements. Justification for using the 
constrained Gamma approach is as follows: The mean 
axis ratio relation (3) is needed to capture the 
nonlinear nature and more spherical shape for 
raindrops. The oscillation effect r1 is believed to be 
small in a radar sample volume. Nevertheless, the 
oscillation correction term can be included in the 
model calculation and rain DSD retrieval when r1 is 
known from different phase (φDP).  The µ - Λ relation 
simplifies and improves rain DSD retrieval. As seen 
from its converted σm - D0 relation, the µ - Λ relation 
has physical base rather than purely statistical error.  

 Previously, rain DSDs were simulated by 
randomly generating Gamma DSD parameters within 
certain ranges.  With the µ - Λ relation (7), more 
realistic rain DSDs can be simulated with less 
uncertainty as follows: (i) construct mean values of µ 
and Λ using (7) in a µ  range of (-1, 9); (ii) randomize µ 
(or Λ, or them both) with a standard deviation (say 0.7 
corresponding to a uniform distribution of ±1.2 shown 
in Fig. 3); (iii) generate lognormal distributed rain rate 
R and calculate the third DSD parameter N0 (or Nt or 
Nw).  
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Figure 1. Raindrop axis ratio as a function of equi-
volume diameter derived from in-situ measurements. 
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Figure 2. Relative standard error of the parameters 
corresponding to radar measureables due to 20%(1-r)  
fluctuation of axis ratio.  
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Figure 3: Scatter plots of µ - Λ  values obtained using 
the moment method with filtering of rain rate R 
>5mm/hr and total counts CT > 1000. 
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Figure 4. Dependence of σm on D0 for the µ -
Λ relation and fitted values of µ =0, 3, and 6. 
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Figure 5: Dependences of log(Nt/ZH) on differential 
reflectivity (ZDR) for constrained Gamma DSD.  
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Figure 6: Comparison of DSD parameters retrieved  
from polarimetric radar measurements using the two 
approaches as compared with disdrometer 
measurement.   (a) log(Nt), (b) µ,  (c) rain rate (R), and 
(d) median volume diameter (D0). 
 

 

 

 


