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HIGHLIGHTS OF REFRACTIVITY OBSERVATIONS DURING IHOP_2002
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1. BACKGROUND

Refractivity measurements by radar (Fabry et al. 1997)
offer us our first glimpse at the 2-D structure of near-
surface moisture at the mesoscale. While most moisture
measurements until now had been limited to point
values and vertical profiles, refractivity measurements
allow us to observe the time evolution of moisture field
in the same way that radar reflectivity made possible the
study of the mesoscale structure of precipitation.

During IHOP_2002, seven weeks of refractivity data
were collected using the NCAR S-Pol radar. These
confirmed the ability of refractivity to map the air masses
and some of their characteristics (Pettet et al. 2003) as
well as the potential of refractivity data for research and
operational use. In parallel, very few researchers have
been exposed to refractivity imagery and know what
kind of information one can obtain from it. In this paper,
we will showcase some of the measurements made in
Oklahoma in an attempt to both demonstrate their value
and give potential users a better feel for what to expect.

2. TYPES OF MEASUREMENTS

Refractivity is measured by monitoring the travel time of
radar waves between the radar and fixed targets on the
ground. Changes in the phase of a fixed target can be
linked to slight changes to the speed of light, from which
the refractive index n and the refractivity N of air can be
inferred. In the troposphere, N is a function of the
pressure P (hPa), the temperature T (K), and the vapor
pressure e (hPa) following
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Two types of images were made. The first is the actual
field of N. Although the density term Ny, is larger than
the moisture term Nue:, most of the spatial variability
observed in N fields is caused by Nwer. Therefore, given
representative values for P and T, one can use N to
derive e and hence the dew point temperature Ty. In the
N images to follow, the color scale has two sets of units:
one is for refractivity, which is the quantity that is really
being measured, and one is for Ty which is being
derived using surface temperature and pressure data
from the nine surface stations within 60 km of S-Pol.
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The second type of image is the scan-to-scan N change
map. This map is counter-intuitively more accurate than
the N map, and is especially useful to single out regions
where dN/dtis changing such as faint boundaries.

At the S-Pol site, ground targets were typically observed
up to 30 km range, except towards the NW quadrant
where, after a short gap caused by the Beaver River
valley, they were seen up to 60 km range. Because N
and dN/dt maps are made using ground targets, the
data coverage is much smaller than for reflectivity or
Doppler velocity. Nevertheless, it is large enough to
allow a variety of observations to be made over the
seven week period.

3. EXAMPLES OF RESULTS

The top of Figure 1 shows the histogram of refractivity
observed as a function of time. It illustrates the diurnal
cycle of N data and the range of values being observed
at any time, with dark narrow areas corresponding to
very uniform conditions and wide or multimodal light
areas being indicative of noticeable gradients in
moisture within the small data coverage area. Since it
covers the whole field experiment, it gives an unbiased
view of the refractivity variability over a long period and
allows the reader to get a better appreciation of the
frequency of occurrence of the examples to follow.

Twelve sets of examples of refractivity imagery are then
provided in the bottom part of Figure 1 associated with
different signatures in the histogram. Examples cover a
wide variety of phenomena: larger scale moisture
boundaries such as those associated with fronts (note
[5]), drylines and other convergence lines ([4], [12] and
[13]), gust fronts and outflows ([8], [10], [11]), or less
sharp gradients of unclear origin ([7] and [10]); boundary
layer (BL) phenomena such as rolls ([14]), more cellular
structures ([1]), and uneven moistening of the BL by
surface fluxes ([6]); and finally, nocturnal waves ([9] and
[10]). As this list suggests, refractivity data could hence
be of considerable interest not only to meteorologists
concerned with convection initiation, but also to
researchers in boundary layer processes.
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[2] Gradual sharpening of a moisture gradient associated with a
reflectivity fineline. Similar to but not asimpressive as [4].
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[4] One of the banner days
for refractivity, asamain
dryline and afew secondary
drylines gradually built up
over the area.
Interestingly, the build-up
of the boundaries was
detected with refractivity
before one could clearly
observe any reflectivity
finelines. This might be
related to the fact that it
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associated with the con-
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[6] Thanksto very
weak winds and
uneven rain in the
previous days (first
image), we observed
the gradual
appearance of
regions with
different humidity
(far right) solely
caused by the
variable surface
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Fig. 1. Top: Histogram of refractivity as a function of time observed by the S-Pol radar in the Oklahoma Panhandle
from the 13 May to 25 June 2002. The difference between the Ny, curve and the gray shade values is proportional to
the amount of moisture measured near the surface.

Bottom: Mini case studies of individual events annotated on the histogram plot. These include a short text description
and a variety of radar data (surface refractivity, 5-min surface refractivity change, and PPIs of reflectivity and of
Doppler velocity) and surface observations (often plotted on the refractivity maps, sometimes plotted aside in the form
of a time series).
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of an air-mass boundary coming
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[9] Nighttime bore as
seen on (left to right)
reflectivity, Doppler
velocity and 5-min
refractivity change.
At thistime, the
boreisbarely
detectable on
refractivity as
pressure waves show
some correlation
with dew points.
Case analyzed by
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[10] Two examples of
refractivity boundaries:

a sharp temperature and
moisture boundary (caused
here by a gust front), and a
diffuse moisture transition a
few hourslater. Both the
refractivity change maps
and the surface data (far right)
show the different nature of
the boundaries. The latter
example displays hints of a
wave structure within it, not
an uncommon occurrence
for nighttime boundaries.

[11] Very high range
of refractivity values
caused by the presence
of multiple storm
outflows. /
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[8] (Multiple?) storm outflow(s)

from aline of thunderstorms
SW of theradar site. While
the reflectivity map shows
only one fineline associated
with the outflow (solid and
dotted line), the refractivity
map (right) suggests the
presence of multiple boundar
with only an extremely faint

refractivity contrast colocated

with the reflectivity fineline.
In this case, the outflow is

relatively warm and dry; in others

(e.g. [11]), it is cool and hum
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[12] Here, the relatively wide range of refractivity values observed is associated
with the presence of a convergence line just NW of the radar site (visible on
reflectivity as afineline (right) aswell as on refractivity (far right)). Although
clouds poked through the capping inversion (see photo below from S-Pal),

no storm initiated.
w

[13] On this day, aweak low pressure e - Refractivity
system was forming over S-Pol. A o 200?363{(5122

persistent slow-moving dry pocket
drifted to the southern edge of the
refractivity coverage. By 23367,
aboundary had built up and was

moving south (see the refractivity and
refractivity change maps on the right).

In parallel, agust front coming from the
south can be seen on the reflectivity map
(far right) 60 km from the radar. These
two boundaries collided 45 min later
and a severe thunderstorm initiated 30 km
east of S-Pol as aresult.

[14] Example of smaller scale variability
in refractivity caused by the boundary
layer structure on a sunny and windy day.
At thistime (about 14:00 solar time),

BL rolls can be observed on reflectivity
(firstimage). On refractivity (second
image), when two images are averaged
(19:59 and 20:04) to remove the cross-
roll variability, one may observe some
along-roll refractivity structure
superposed on a stronger larger scale
moisture variability. The 5-min
refractivity change map (far right),

that enhances cross-wind N variability,
reveals the presence of cross-roll

N structure as well.
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Fig. 1 (cont.)
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