
1. INTRODUCTION

It is widely held that identifiable ‘convective regimes’
exist in nature, although precise definitions of these are elu-
sive.  Examples include land / ocean distinctions, break /
monsoon beahvior, seasonal differences in the Amazon
(SON vs DJF), etc.  These regimes are often described by
differences in the realized local convective spectra, and
measured by various metrics of convective intensity, depth,
areal coverage and rainfall amount.

Objective regime identification may be valuable in sev-
eral ways: regimes may serve as natural ‘branch points’ in
satellite retrieval algorithms or data assimilation efforts; one
example might be objective identification of regions that
“should” share a similar Z-R relationship.   Similarly, objec-
tively defined regimes may provide guidance on optimal sit-
ing of ground validation efforts.  Objectively defined regimes
could also serve as natural (rather than arbitrary geograph-
ic) domain “controls” in studies of convective response to
environmental forcing.

Quantification of convective vertical structure has tradi-
tionally involved parametric study of prescribed quantities
thought to be important to convective dynamics: maximum
radar reflectivity, cloud top height, 30-35 dBZ echo top
height, rain rate, etc.  Individually, these parameters are
somewhat deficient as their interpretation is often
nonunique (the same metric value may signify different
physics in different storm realizations).  Individual metrics
also fail to capture the coherence and interrelationships
between vertical levels available in full 3-D radar datasets.

An alternative approach is discovery of natural parti-
tions of vertical structure in a globally representative
dataset, or “archetypal” reflectivity profiles.  In this study, this
is accomplished through cluster analysis of a very large
sample (O[107]) of TRMM-PR reflectivity columns.  Once
achieved, the rain-conditional and unconditional “mix” of
archetypal profile types in a given location and/or season
provides a description of the local convective spectrum
which retains vertical structure information.  A further cluster
analysis of these “mixes” can identify recurrent convective
spectra.   These are a first step towards objective identifi-
cation of convective regimes, and towards answering the
question: “what are the most convectively similar locations
in the world”?

2. CLUSTER ANALYSIS OF VERTICAL PROFILES

A cluster analysis simply answers the question: Given
a set of n-parameter descriptions of individual cases or
instances, find x natural clusters, or partitions, of these
cases in the n-space.  The number of clusters requested, x,

is arbitrary and must be prescribed, althogh iterative exam-
ination of analyses while varying x can often reveal when
too many or too few clusters are sought.  In the case of clus-
tering reflectivity profiles, a reasonable goal is separation
into clusters which appear to indicate clearly different con-
vective or microphysical states.  In this study, we use the
Interactive Data Language (IDL) CLUSTER_WTS() and
CLUSTER() routines, which perform a ‘flat’ (non-hierarchi-
cal) clustering using a (transparent) neural network-based
optimization engine.  The routines accept a standardized
array of multiparameter case descriptors (see below) and
yield an assignment of each case into one of x discovered
clusters.

4 million TRMM-PR profiles (a subsampling of 2 years
of data) containing echo in or adjacent to a precipitating col-
umn (a 4 km x 4 km PR pixel) are used to identify natural
cluster centroids.  For simplicity during this proof-of-concept
study, only profiles occurring in locations with surface tem-
perature > 16C are considered (loosely, ‘warm season’ pro-
files).  The PR reflectivity-vs-altitude information is
remapped to reflectivity-vs-temperature profiles using the
closest prior 6-hrly NCEP reanalysis temperature profile.
Reflectivities at 31 levels from 16C to -65C are used as
inputs to the cluster analysis.  Additionally, the TRMM 2A23
convective/stratiform/other classifiers, and their confidence
levels, are used as inputs, as well as the 2A23 bright band
detection classifier.  Each reflectivity column thus contains
n=37 descriptors: 31 reflectivity values, “is convective”, “is
stratiform”, “is other” binary flags, convective and stratiform
confidence (ordinal from 0-10) and a “has bright band” bina-
ry flag.  Since the 2A23 convective/stratiform classifier con-
siders both vertical and horizontal information, the cluster
analysis does incorporate some horizontal structure infor-
mation in addition to the vertical profile data.  The input to
the cluster analysis is thus a 37 column x 4,000,000 row
array, standardized along columns.  Theoutput is an assign-
ment of each column into one of x=25 clusters (25 being
subjectively selected after examination of x=2,3,...29,30
analyses).  Once the cluster centroids are identified, the
entire ~70,000,000 columns in the 2-yr dataset are
assigned to clusters (Fig 1).

In Fig. 1, the clusters are subjectively grouped (i.e., not
a result of the cluster analysis itself) into ‘familiar’ profile
types: stratiform, ‘weak aloft’, convective and anvil.  For the
geographic convective spectrum analysis below, the clus-
ters are consolidated into 12 subsets (outline boxes in Fig.
1), merging clusters which appear phsyically similar and
only differ in, e.g., their depth.  Fig. 1 also documents the
percentage of columns in each cluster in which the various
2A23 classifiers are active (stratiform, convective, ‘other’,
and bright band).

The spatial distributions of occurrence of these profile
types is informative in and of itself.  Fig. 2 shows maps of
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Fig. 1: TRMM PR vertical column clusters identified from a 37-parameter, 25-cluster cluster analysis, trained on 4 mil-
lion columns then applied to a 2-yr 70 million column dataset.  The conditional reflectivity spectra at each temperature level
in each cluster are contoured; contours are 8 uniformly-spaced levels from 0 to the maximum conditional frequency in each
plot.  Upper right insets show (top): frequency of this cluster in the entire warm-season dataset, (middle): percentage of
columns in this cluster classified by 2A23 as stratiform, convective or ‘other’, (bottom): percentage of columns in this cluster
classified by 2A23 as having bright band.  Boxes show subjective reduction into 12 “:consolidated” clusters.



the rain-conditional frequency of occurrence of the “warm
stratiform” and “deep convective” reduced clusters.  The
“warm stratiform” cluster, as expected, is dominant over
cold ocean gyres (likely stratocumulus) and the “deep con-
vective” over tropical continents.  In the “warm stratiform”
frequency map, several features are of note: (1) an appar-
ent marine layer is found penetrating the west coast of
Africa, (2) most of Africa is ‘depleted’ of shallow warm strat-
iform rain, relative to South America, (3) very high resolution
features, such as the Red Sea, are discernible.  The fact
that spatially coherent variability exists in these frequencies
of occurrence suggests that using them to describe the
local “convective spectrum” is a  legitimate endeavor.

3. CLUSTER ANALYSIS OF CONVECTIVE SPECTRA

As noted above, the 25 “discovered” clusters have
been reduced to 12 “physically distinct” clusters (by simply
combining similar clusters).  The set of 12 rain-conditional
frequecies and 12 unconditional frequencies (24 total) at
each map grid point (e.g., in Fig 2) provide the inputs to a
further cluster analysis to identify recurring convective spec-
tra.  Note that in this study, the inputs are annualized fre-
quencies, so the unconditional inputs (half of the total) are
somewhat influenced by seasonality; future analyses will be
performed with seasonal inputs.

Convective spectrum cluster analyses were performed
requesting x=2,3,...25 clusters.  To mitigate noise in the
input data (e.g., as in Fig. 2), 2.5 deg spatial averaging was
applied to the “raw” profile frequencies of occurrence, which
were recorded on a 0.5 deg resolution grid (as in Fig. 2).
Maps of these analyses are diffficult to render in grayscale
or contour form and not shown here (although their appli-
cation is shown in section 4, below).  

4. SIMILARITY MAPS

The vertical profile and convective spectrum cluster
analysis results are immediately capable of answering the
question:  For a reference location, where else in the world

is most convectively similar to this location? (with empha-
sis on vertical structure and using a nonparametric
approach).  This question is particularly important for inter-
pretation and application of field program or ground valida-
tion data.  As such, two “similarity metrics” for a number of
“interesting” locations (e.g., locations of high-profile field
campaigns) have been computed.

The first metric (left column of Fig. 3) actually ignores
the convective spectrum cluster analysis, but uses the
same 24-parameter descriptor of each location.  It is simply
the distance, in 24-space, of each map point’s parameters
to the reference location’s parameters (again, these param-
eters are profile type frequency of occurrence).  The second
matric (right column of Fig. 3) is defined from a set of 23
(x=2,3...25) convective spectrum cluster analyses (as in
Section 3).  This metric is simply the number of times each
map point occurs in the same cluster as the reference point,
in this set of 23 analyses.  This metric thus considers not
only the multidimensional distance between each location’s
spectra, but also the tendency of some spectra to recur
(cluster) within that n-space.

The two approaches both yield useful information (Fig.
3).  For the three oceanic domains, the distance metric
shows that the reference domains are broadly representa-
tive of many oceanic regions, although all are most similar
to “transitional” regions of the warm pool or ITCZ.  The clus-
ter metric refines this interpretation.  The GATE domain is
perhaps most representative of the west Pacific warm pool
(its spectrum is both fairly similar in the 24-input space and
unique enough to recur in the same cluster often), while the
COARE domain is more representative of the
transition/edge of the warm pool, and the Kwajelein domain
is even further on the ‘periphery’ of both the warm pool and
other convectively active oceanic regions.  The TRMM-LBA
(Rondonia, Brazil) occurs in the same cluster as many of
the maritime continent islands.  The ‘front range’ of the
Congo basin (the location of the world’s extremum in annu-
al lightning production) exhibits a fairly unique spectrum,
matched only by the Colombian highlands (another global

Fig. 2: Conditional frequencies of occurrence of the “warm stratiform” profile type (cluster 2 in Fig. 1) and the “deep con-
vective” profile types (clusters 14+17+20 in Fig. 1).  Black denotes lowest frequency of occurrence; white, highest.



lightning extremum) and some of southern South America.
Similarity maps (not shown) were also generated for the
southern Great Plains in the U.S., and showed most simi-
larity to the northern African ITCZ / Sahel region, where
MCS’ are common.  Also examined (and not shown) were
the EPIC (East Pacific) domain, Darwin Australia, Socorro
New Mexico, the SPCZ, the southeast Pacific cold gyre,
Brazil, Dallas Texas, Orlando Florida, and the Colombian
highlands.  These results are available at: http://home-
page.mac.com/wxguyinal/Cluster/Cluster.htm.

The applications of these plots are immediately obvi-
ous.  For example, from a climatological standpoint, Z-R
relationships trained using data from the reference location
should, in principle, be most accurate in the most similar
regions of the maps.  Similarly, regions of similarity may
serve as useful control domains within which to examine,
e.g., PR and TMI  retrieval algorithm discrepancies.  Finally,
in concert with environmental data as inputs, objectively
defined convective spectrum clusters can serve as inputs to
cluster analyses which isolate true convective regimes,
where a regime could be reasonably described by its com-
bination of forcing, convective response (spectrum) and
adjusted state.

5. CONCLUSIONS

This ‘proof of concept’ study demonstrates that auto-
mated typing of radar vertical columns, using a somewhat
nonparametric approach which retains vertical structure
information, is feasible.  Once profiles have been classified,
the classes can be used to help classify storms (an appli-
cation not discussed here).  The spatio-temporal frequen-
cies of occurrence of these ‘archetypal’ profiles provide a
multiparameter description of the realized convective spec-
trum.  Since this spectrum varies greatly across the globe,
a similarly nonparametric approach (cluster analysis) can
[should] be used to isolate recurring convective spectra, a
first step in objective identification of convective regimes.
Objective regime identification may be useful in algorithm
development, ground validation, satellite retrievals, data
assimilation, and empirical or theoretical studies of convec-
tive response to environmental forcing.
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Fig. 3: “Similarity maps” showing metrics of the degree of convective spectrum similarity between the entire tropics and
various reference locations (on an annualized basis).  Left column denotes the 24-dimensional distance metric, with white
areas “most similar”.  Right column shows the number of times in the 23 spectrum cluster analyses each location occurred
in the same location as the reference location; again, white is “most similar”.


