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1 Introduction

The
�����

relation of the form
���	�
���

has
been long used for radar-based rain rate estima-
tion, and are usually developed based on the dis-
trometer data, which usually contains inadequate
number of rain drop samples. Kostinski and Jame-
son (2002) observed from simulations, that (an ini-
tial assumed linear

�
���
), after regression would

give an exponent � that decreases as the average
number of drops per sample increases, and pointed
out that the spurious exponents are produced by in-
adequate sampling. The retrieval of dsd parame-
ters (using dual-polarized radar data) also involves
power law relations of the form

������������������ , � � �� � ��"! or
�#�������
���%$&���'�(�*)+�

. We study the effects
of the “small sample problem” on the exponent of
these relations when power law regression is used
to analyze the sample data.

2 Methodology and Results

A Monte Carlo simulation procedure similar to the
one in Kostinski and Jameson(2002) is conducted
to study the “small sample problem”. In this study, a
gamma drop size distribution of the form:

�,$&�-).����/ $&021 3
465879)+:<;>=?.$@7-5�AB)+� � C �� �ED :6FHGJILK+M NPORQHS'TVUUXW
(1)

is used to generate the DSD, where
�Y/

is the num-
ber of drops per unit volume,

� � is the medium vol-
ume diameter, and

7
is the DSD shape factor.

Fixing the sample volume to
A[Z]\

, we can control
the range of

�(/
, and vary the parameters:

7
and

� �
uniformly (

� � : ^ 1L_ to ` 1L_<ZaZ and
7

:
�bA

to
3
) for each� /

range. The full range of cedBf = � � / (from 1 to 4.5) in
this study is divided into small intervals. For a given
set of

� /
,
7

and
� � , a standard procedure is used to

simulate gamma random variables (Chandrasekarg
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Figure 1: Power law exponent (of the form
� � ��� � ��
�-�� and

� � � � � ��"! ) versus mean sample number

and Bringi 1987). Subsequently for a given
�h/

in-
terval, 1000 gamma dsds are simulated with pa-
rameter values uniformly ranging over the intervals
specified earlier. The radar measurables are sim-
ulated based on Rayleigh scattering and the axis
ratio model assumption: the combined model of
Andsager-Beard (1999) and Beard-Chuang (1987).
From the actual DSD, we can estimate the param-
eters:

� � and
���

based on DSD moments, and
obtain the actual rain rate and radar measurables.

Power law regressions of the forms
� � ��� � ��
�-�� , � � � � � ��"! (direct nonlinear fit instead of log

linear fit) are applied to the estimated DSD pa-
rameters i� � , i� � and measurables

� �"! , � � for
each

� /
interval. Fig.1 shows that the exponent

of normalized
�
�j� � relation changes within 7 to

8 (roughly 10% variation). As long as the sample
number is high enough, the exponent stablizes to
around 7, but the actual number may depend on
the DSD parameters

� � and
7

. The exponent of� �"! �,� � is consistently close to 2, and is immune
to the change of sample number. These results
suggest that the “small sample” problem is not as
important for the exponent of normalized relations:� � ��� � �k�
� �� and

� � � � � ��"! when power law re-
gressions are applied to find these exponents.

To study the effects of “small sample problem” on
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Figure 2: Normalized Z-R power law / direct Z-R
power law exponent versus mean sample number
for each

��/
interval

the normalized Z-R relation of the form
�������(����%$&������� ) �

, a Monte Carlo simulation is conducted
in the same way as the previous study for

�6�b�8�(�
and

� �"! � � � relations except that the DSD param-
eters

7
and

� � are chosen to be fixed, and
�

is only
treated as the

3 ���
moment of DSD. Fig.2 shows that

the exponent of the normalized Z-R relation varies
between 1.5 and 1.75, whereas the direct

� � �
power law exponent changes in the range from 1 to
1.75, which is generally in agreement with the re-
sults of Kostinski and Jameson (2002). Thus, the
normalized

�j� �
relation exponent is shown to be

less sensitive to the change of sample size than the
direct Z-R relation exponent.

From the previous studies, we find that the power
law relations normalized with respect to

�h�
are not

very sensitive to the “small sample” problem. It is of
interest to study the effects of the “small sample”
problem on other normalization or ’scaling’ laws.
Sempere-Torres et al. (1994) have proposed a gen-
eral formulation for

� $&��)
based on a scaling law:� $&����� )#���
	 f C ���� D (2)

where 
 and � are constants, which satisfy ��� 5 
 �A
,
�

is the water content and f is a general distri-
bution function. The evaluation of � is based on
various moments of the measured DSD. Power law
fittings are applied to fit the DSD moments and the
reference variable

�
. The exponents of these re-

lations and the orders of moments form a 1-1 map-
ping. The � is considered to be the the slope of the
exponent versus the order of moment function.

Assuming gamma DSD specified in (1) with vary-
ing

� /
and fixed

7
,
� � , a Monte Carlo simulation is

conducted to study the problem. Following the pro-
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Figure 3: Power law exponent versus order of mo-
ment for � estimation

cedure for estimating � , the exponent versus mo-
ment number curves for the

� /
intervals are shown

in Fig.3. In theory, when fixing
7

and
� � , DSD mo-

ments are all linear functions of
� /

, therefore, the
slope of the curves should be uniformly 0. From the
figure, we can see that the slope of these curves
decreases as sample number increases, and ap-
proaches 0 only when the sample number is suf-
ficiently large (i.e. 10000 - 100000 in the plot).
Therefore, the evaluation of � based on DSD mo-
ments and power law fitting is significantly affected
by the “small sample” problem.

3 An Alternative Approach

As we know, the distrometer-based analysis will be
more or less affected by the “small sample” prob-
lem from the previous study. We prefer to adopt an
analytical approach to analyze radar measureables
based on some model assumptions, and derive new
DSD retrieval relations so that we can use these re-
lations to verifiy or adjust the empirical relations like
the ones proposed by Bringi et al. (2002).

In this paper, we use the three parameter
drop size distribution model, the combined shape
model (Andsager and Beard (1999) and Beard and
Chuang model (1987) ), and the Gaussian canting
angle distribution model (mean 0 and standard de-
viation ��� ) to model the rainfall process. First, the
case of � � � ^ , i.e. no canting case is studied.
For a spheroid with volume-equivalent diameter

�
,

under Rayleigh-Gans scattering, the scattering am-
plitude for both horizontal and vertical polarizations
can be well approximated as second-order polyno-
mials of

�
. Both

� �
and

���
can be treated as in-

tegrals of these approximate polynomials weighted



by
���

. Therefore, we define a new parameter
���

as, ���[��� ���	�
� � � � 1 (3)

With the parameter
� �

, the 
 �"! (i.e.
� �"! in linear

scale) can be well approximated solely as a function
of
���

. Note that the new parameterization of 
 �"!
as a function of

���
suppresses the effects of the

uncertainty of
7

.
The

��� � 
 �"! relation is given as follows,


 �"! ��A � ^ 1 ^ 0�_ 0�����
 ����� �� 1
(4)

This relation can be used for radar-based DSD pa-
rameter retrieval. Comparing the relation with the� � � � �"! relation proposed by Bringi et al. (2002),
we find that since 
 �"! ��A is very close to

� �"! �XA ^ , the� � �8� �"! relation takes a similar power law form as
the

� � � 
 �"! relation.
When � � is small (usually � A ^�� ), the

� � � 
 �"!
relation is adjusted as,


 �"! � A � F G �������� ^ 1 ^ 0�_ 0H� ��
 ����� �� 1
(5)

To validate the
���

estimator, we simulate radar
measureables with the 2-D video distrometer drop
spectra from Florida, Graz and Papua New Guinea,
and assuming drop axis ratios follow the com-
bined Andsager and Beard, and Beard and Chuang
model, with � � � A ^�� . The simulated 
 �"! is ap-
plied to estimate

���
. The retrieval accuracy of

���
is shown in Fig.4.

The
���

-rain rate relation can be written as,�
� � ��� �X$@79)� ��
 \ \� (6)

where

� �
$&79).� 021L4 �	! ^ 1 3	!aA ^ G \�" ?.$&7-5 � 1 3
4 ) � $&7 5�4 ) ��
 \ \?.$&7 5�4 ) 1
(7)

Therefore, rain rate can be estimated from
� �

with
the above

�
�8�
relation.

4 Summary

In this paper, the effects of the “small sample”
problem on the normalized power law relations of
the form

� � ��� � � �
�-�� , � � � � � ��"! or
� � ��� � ��%$&����� � ) �

are studied, and it is concluded to that
the exponents are not sensitive to the “small sam-
ple” problem. Intuitively speaking, the normalization
with

�(�
makes use of the

0$#&%
moment of DSD, and
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Figure 4: (a)the performance of the
� �

estimator
without noise (b) the performance of the

� �
estima-

tor in the presence of random noise. Note that in
both plots,

� �
’s are retrieved when

� �"! � ^ 1 ` %�'
.



partly “cancels” the statistical fluctuation of other
moments of the DSD. From Monte Carlo simula-
tions, we also show that the evaluation of � for
Sempere-Torres’s DSD scaling law can be signifi-
cantly affected by the “small sample” problem. A
new parameter

� �
is defined as the ratio of the

4 ���
and the

3 ���
moments of DSD, and a

� � � 
 �"! rela-
tion is proposed and verified via simulation.
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