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1. Introduction

Multiparameter radar enables detection and estimation of
the types of precipitation by exploring the relations be-
tween polarimetric measurables and hydrometeor char-
acteristics such as size, shape, orientation and concen-
tration of the particles. In linear polarization, the polari-
metric measurables used for classification purpose include
reflectivity factor (Z3,), differential reflectivity (Zg4,.), spe-
cific differential phase (Kg4p), linear depolarization ratio
(LDR) and co-polar correlation coefficient (pco). By
combined rules based on these variables, the knowledge
on precipitation types can be obtained from radar mea-
surements (Liu and Chandrasekar 2000). However, all
the physical factors of particles jointly affect the linear
polarimetric measurables so that there exists ambiguity
in classification (Straka et al. 2000). For example, LDR
depends on mean canting angle as well as shape irreg-
ularity and canting dispersion; p., shows the degree of
decorrelation which results from the factors such as non-
zero backscatter differential phase shift, shape irregular-
ity, mixture of different precipitation types, etc.

Compared to linear polarization basis, the circular po-
larimetric measurables can separate some physical fac-
tors. Circular depolarization ratio (CDR) is dominated
by particle shape and independent of particle orientation
while the estimator py (ps = E[cos4] where E stands
for expectation over the pdf of the canting angle () is
only related to the latter. With the availability of the
full covariance matrix, it is feasible to implement basis
transformation. We can take advantage of circular ba-
sis transformation to separate the orientation and shape
factors.

However, it is well known that propagation effects will
corrupt the circular radar measurements while the lin-
ear measurements are much less sensitive to such effects
(Jameson and Davé 1988, Torlaschi and Holt 1993). In
this paper, propagation effects will be corrected in linear
measurement and basis transformation will be employed
to retrieve hydrometeor properties on orientation as well
as on shape for improving precipitation classification.
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2. Polarimetric Covariance Matrix and Basis
Transformation

In linear polarization basis, the scattering matrix can be

expressed as
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To study randomly distributed medium, we employ the
second order moments and get the covariance matrix in
linear basis as
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The linear dual-polarization radar such as CSU-CHILL is
able to measure this full 3X3 covariance matrix. The
covariance matrix in circular basis (X.) can be obtained
from the transformation of X; in Eq. (2) as,
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where T is defined as,
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To study the effect of particle orientation, the hydrom-
eteor is regarded as possessing an axis of symmetry and
its orientation can be described by v, the angle between
incidence direction and the symmetry axis, and 3, the
angle between horizontal polarization and the projection
of the symmetry axis in the polarization plane. Apply-
ing the concept of basis transformation, the covariance
transformation matrix incurred by canting angle in linear
basis is:
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Similarly, in circular basis the covariance transformation
matrix is
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In order to correct the propagation effects, generally
the net mean canting angle along the propagation path
is assumed to be zero (in the absence of electrification).
Once such assumption holds, the propagation matrix in
linear polarization is diagonal
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So is the corresponding covariance transformation matrix
imposed by propagation effects:

1
T)(P) = ™" e (8)
672u
r, Ay )
h =AM —=X)r=—= P K
where u = (A} — Ao)r 2(8.686 + jKap)

However, the propagation matrix in circular basis is
not diagonal and its covariance transformation matrix is
rather complicated as shown in the symmetric matrix:
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Eq. (6) implies that it is convenient to retrieve the in-
formation on canting angle from circular covariance ma-
trix. On the contrary, Eq. (8) implies that it is feasible to
correct the propagation effect in linear polarization basis.
Note that for correcting propagation effects the same as-
sumption is considered here as in other related literature
(Jameson and Davé 1988, Torlaschi and Holt 1993).

3. Data Analysis

In the Severe Thunderstorm Electrification and Precip-
itation Study (STEPS, 2000) project, a strong con-
vective storm developed in the dual-doppler coverage
area of CSU-CHILL and S-Pol radars from 2143UTC to
2245UTC on 11 June 2000. At 2225UTC, the storm
was developing toward the baseline of the two radars and
CSU-CHILL took a RHI scan along 338° azimuth angle.
Fig. (1) illustrates a ray of data at low elevation with
conventional linear radar measurables. At 30 km along
range, the reflectivity reachs 60 dB and Z;,. shows a
large reading around 4 dB as well as rapidly increasing
®4,. There is no apparent increase in p,, which means
the net mean canting angle along the propagation path
is close zero according to Ryzhkov (2001). Furthermore,
LDR suggests the canting angle is distributed with a
finite width.

Before applying polarization transformation, the con-
structed covariance matrix in linear polarization basis
must be calibrated carefully, especially for Z4,., LDR and
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Figure 1: Range profiles of linear polarimetric measure-
ments on 11 June 2000; EL=0.76°, AZ=338°.

the co-to-cross covariance phases. Hubbert et al. (2003)
addressed this issue and gave a detailed methodology,
which is utilized here to first construct the calibrated co-
variance matrix.

The antenna may also introduce error in polarization
states and result in incorrect interpretation after polar-
ization transformation. Assuming the precipitation is ho-
mogenous, the antenna-induced polarization error can be
represented by another transform matrix and for CSU-
CHILL it was estimated by Hubbert and Bringi (2003b).

What is left is the intrinsic covariance matrix with the
propagation part intact. With the assumption of zero net
mean canting angle, the transformation matrix is simply
a diagonal matrix shown in Eq. (8) with two parameters:
@4, and Agp. The estimation on @4, is obtained by
adaptively filtering the measured differential phase along
the propagation path (Hubbert and Bringi 1995), and
the estimation of A,, is based on the ®,, constraint
algorithm described by Bringi et al. (2001). For this
single RHI sweep, a linear relation between Ay, and K,
is assumed and the averaged coefficient is applied to the
whole sweep.

Once these steps are done, Eq. (3) is implemented
to transform the covariance matrix from linear basis to
circular basis and the radar measuables in circular po-
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Figure 2: Same as Fig. (1) except for the transformed

circular polarimetric measurements. The variables be-
fore propagation correction are ploted in dash lines, while
those after correction are ploted in solid lines.

larization are retrieved. Fig. (2) shows both the circular
measuables that are retrieved before and after the prop-
agation correction. Note the dramatic distortion caused
by propagation effects on CDR, ORTT and py. Mean
canting angle is also estimated from the circular covari-
ance matrix for every resolution bin and its reading shows
close zero.

4. Improvement on Precipitation Classification

In circular basis, CDR is independent of hydrometeor
orientation and py4 is only dependent on the orientation.
Hydrometeor classification procedure may be able to take
advantage of such property. To study this possibility,
a variety of storm types are selected for heavy rain (as
analyzed above), rain hail mixture (2105UTC 29 Aug.
2002), hail (2115UTC 4 Jun. 2001) and snow (2139UTC
17 Mar. 2003). The scatterplots versus reflectivity are
given in Fig. (3).

Zg, is able to present excellent separation among the
precipitation types in the sense of mean shape. How-
ever, LD R looks similar for heavy rain and rain-hail mix-
ture. Even for rain and hail, there is still some overlap-
ping regions in the scatterplot. In general, LD R depends
on particle shape, its orientation and the decorrelation.
Many factors could contribute to decorrelation, which
makes it hard to interpret the reading of p.,. Much
overlap can also be found except that part of rain-hail
mixture leads to fairly low p., (below 0.95).

As for CDR comparing to Zg,., even though it is in-
dependent of orientation distribution, it introduces more
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Figure 3: Scatterplots of (a) Zg;, (b) LDR, (c) pco, (d)
CDR, () ORTT, (f) pa vs Z}, (in the sequence of left to
right, top to bottom), where marker ‘x’ represents data

for the rain case, marker ‘o’ for the hail case, marker ‘-
for snow and 'A’ for rain-hail mixture.

ambiguity than Zg4,.. Al-Jumily et al. (1991) illustrated
the ambiguity of distinguishing between rain and hail by
C DR with real circular polarization radar measurement.
Here we will investigate the reason as follows. From
Eq. (6) we can express propagation-corrected CDR by
the variables in the principle plane as:
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where zdr refers to the differential reflectivity in principle
plane in linear scale and p;, refers to correlation coeffi-
cient between S1; and Ssy. Therefore, C DR will fluctu-
ate with decorrelation besides mean shape. Even with-
out decorrelation, CDR will give same value for both
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negative Zy,. and positive Zg,. as shown here for hail
(Z4r around -0.5 dB) and snow (Zg, around 0.5 dB),
i.e., CDR cannot distinguish between oblate and prolate
shapes at low elevation angles.

Similarly, ORT'T' could be expressed as:
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With p2 and imaginary part of decorrelation inside,
ORTT presents better classification among the various
precipitation types. Note ORTT comes from co-to-cross
circular covariance while p4 comes from co-polar circular
covariance. Since co-polar power is less than cross-polar
power in circular basis, ORTT will be a better estimator
than p4 as we will see next.

The p4 in circular basis should be taken as a counter-
part of LDR but it is a pure orientation factor. We can
see a clear boundary between rain and hail in the scat-
terplot of p4 vs Zp. For the rain-hail mixture, it depends
on which one dominates. However, it scatters over large
range for snow even over 1, which we believe results from
artifacts in transformation because of low SNR. Up to
this point, we believe the combination of ORTT and p4
will tell us more about the hydrometeor types than LD R
and p.,. However, low value of p., implies a mixture of
precipitation types and is valuable for classification.

5. Discussion

In this paper, we reviewed the transformation on polari-
metric covariance matrix between different polarization
basis and explored it to obtain circular set of radar mea-
surables from linear radar measurements. With a real
case from STEPS, it shows that the circular measure-
ments could be obtained with confidence.

In theory, the covariance matrix under different po-
larization bases are equivalent and can be transformed
to other bases. The information is expressed in differ-
ent manner for circular and linear polarization. Specif-
ically, ps is only dependent on orientation distribution
while CDR is independent of that. Both of them along
with ORT'T are sensitive to propagation effects. On the
contrary, all the radar variables in linear polarization are
dependent on shape and orientation of hydrometeors in
a complicated way, but they do not get much affected
by propagation effects. After correction, CDR closely
relates to Zg4, for raindrops in Raleigh-Gans scattering.
LDR relates to orientation distribution but has much
ambiguity for classification. ORTT and ps, however,
provide additional information.

In practice, however, the cross-polar power return is
fairly low and the cross-polar terms are prone to noise and

measurement error, especially for low reflectivity precipi-
tation. The transformation demands an excellent cross-
polar performance for antenna subsystem to achieve cred-
ible estimation of orientation factors. To account for
such concern, CSU-CHILL is undergoing another ma-
jor upgrade to dual-offset Gregorian antenna. Also, a
scheme to measure the full covariance matrix in the slant
45°/135° basis will be implemented. This will enhance
the cross-polar power return and also mitigate somewhat
the antenna polarization error contamination as com-
pared to the H/V basis.
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