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1. INTRODUCTION

There exists a need to evaluate quantitative
precipitation estimates (QPEs) from remote-sensing
platforms such as radar and satellite in a hydrologically
relevant way (Ciach and Krajewski 1999). Traditionally,
QPEs under development are compared to rain gauges.
Evaluation of QPEs solely by rain gauge can be useful
but is lacking where sparsely populated gauge networks
do not capture inherent rainfall variability. In addition,
the scale difference between the orifice of a rain gauge
and radar bins spans 8 orders of magnitude
(Droegemeier et al. 2000). Lastly, multisensor
algorithms are beginning to use the rain gauge
estimates in their schemes, thus reducing the
independence between the predicted and observed
variables.

Recently, efforts have begun to evaluate the
sensitivities of different rainfall estimates or forecasts on
predicted hydrologic variables using hydrologic models.
The accuracy of differing inputs may be difficult to
assess when uncertainty in the model structure,
parameters or even observations of output can
dominate the overall prediction uncertainty. Moreover,
model parameters can be calibrated to expect a given
input (e.g., rain gauges) and even correct for systematic
biases inherent in the rainfall estimates. Successive
recalibration of the model is required for each input
separately. In some cases, a long period of
observations needed for model calibration is not
available for new sensing platforms such as rainfall
estimates from polarization diverse radars. The study
reported herein develops a supplemental ensemble
strategy to evaluate 9 different precipitation algorithms
that are input to a physics-based, distributed hydrologic
model independently. The “ground truth” in this case is
the streamflow observed at the basin outlet.

2. METHODOLOGY

Hydrological evaluation is accomplished by an
ensemble approach that takes into account parameter
uncertainty and various multisensor QPEs. In this case,
performance is viewed from the perspective of
hydrologic model predictions compared with streamflow
observations. The goal here is to determine which
model input will yield the most accurate streamflow
predictions in a probabilistic sense. It is of specific
interest to the developers of QPE algorithms to know
the accuracies and sensitivities of each product. For
example, what is the impact of incorporating satellite
data in the estimation scheme? Does this differ for
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events that are dominated by convection versus those
that contain significant precipitation from stratiform
clouds? Which gauge correction method works best, a
mean field bias adjustment, a local bias adjustment, or
both? Does the inclusion of gauge data in the products
dramatically improve their accuracies? How does the
model perform using gauge data as input alone? While
this ensemble approach is demonstrated on a single
basin, for specific precipitation estimates, using a single
model structure, the generality of the method is not
diminished.
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Fig. 1 - The Blue River study basin’s location (shaded in
gray) relative to the nearest WSR-88D radar and
Mesonet rain gauges.

2.1 Blue River Basin

An existing natural outdoor laboratory for
hydrologic research is located in the Blue River Basin,
near Blue, OK, U.S. gFig. 1). The Blue River Basin
drains about 1200 km“. The headwaters of the basin
are about 80 km away from the nearest weather radar,
KTLX, while the basin outlet is over 200 km away from a
radar. The long distance from radars makes this basin
a good candidate for evaluating QPE algorithms at far
range. The Blue River Basin is also attractive for
hydrologic research due to the natural characteristics of
the basin. There are no reservoirs in the basin, and
there are very few known diversions at this time. The
focus in this natural outdoor laboratory will be to
demonstrate a new methodology in comparing different
QPE algorithms by examining the basin response in a
probabilistic framework.

2.2 QPE SUMS precipitation estimates
Quantitative Precipitation and Segregation

Using Multiple Sensors (QPE SUMS; Gourley et al.
2001) is an automated precipitation algorithm that



produces an ensemble of precipitation estimates having
various levels of complexity. QPE SUMS incorporates
radar, satellite, rain gauge, lightning, and model
analyses in its estimation scheme to generate 9 different
products. A brief explanation of the QPE SUMS
precipitation ensemble members follows. The gauge-
only analysis (GAG) utilizes 15-min rainfall
accumulations from the Oklahoma Mesonet in addition
to hourly rain gauge accumulations available from the
US Geological Survey, National Weather Service, and
other urban networks. The point data are analyzed to a
common 1x1 km grid using a Barnes objective analysis
scheme with the weighting function and cutoff radius set
appropriately for the median gauge spacing. The radar-
only product (RAD) relies on a mosaic of reflectivity
data. This member is equipped with a convective-
stratiform identifier that enables it to utilize different Z-
R/Z-S equations based on the classification. The RAD
product also gets the benefit of using lightning data to
determine if there is convection at a given grid point.
The RAD product is adjusted hourly using a mean field
bias adjustment to yield the radar-mean field bias
adjusted product (RAD-G). In addition to this
adjustment, a “local bias” is computed at each gauge
location by determining the difference between GAG
and RAD accumulations. The local biases are
objectively analyzed to the common grid using the same
parameters used with the GAG product to produce a
local bias field. The local bias field is then added back
to the gridded RAD product to yield the radar-local bias
adjusted product (RAD-LG). Another member (RAD-
LGG) is produced by first removing the mean field bias
from the RAD product and then applying the local bias
adjustment scheme.

The multisensor product (MS) performs
identically to the RAD product for grid cells that have
been identified as convective. This member differs
substantially from the RAD product for stratiform
precipitation. In short, a scheme that is based on
Gourley et al. (2002) adaptively calibrates infrared
satellite data using radar-based precipitation rates that
are measured below the bright band, and applies these
satellite-based rainfall rates to grid points at far range
from radar where it is sampling well above the melting
layer. The goal of this technique is to reduce the range-
dependence commonly associated with stratiform
precipitation. The MS member is adjusted by gauges
analogously to the RAD product described above to
yield the multisensor-mean field bias adjusted (MS-G),
multisensor-local bias adjusted (MS-LG), and
multisensor-mean field bias removed and local bias
adjusted (MS-LGG) products. All 9 QPE SUMS
members are available on the same 1x1 km grid and
have been aggregated so that they are available hourly.

2.3 Vflo™ distributed hydrologic model

The solution to the kinematic wave equation
and modifications to account for trapezoidal channel
routing in a GIS environment resulted in the model,
r.water.fea (Vieux and Gauer 1994). The solution
method solves the 1-D conservation of mass and

momentum equations using finite elements in space and
finite difference in time. Using this finite element
approach a new model was developed called Vflo™,
which may be used for event or continuous applications.
Vieux and Vieux (2002) describe the deployment of the
model for several watersheds including the Salt and
Verde Watersheds in Arizona. Parameters used in the
ensemble simulation study are initial soil moisture
content, saturated hydraulic conductivity, and Manning
roughness coefficient. Initial soil moisture content is
treated as a single value over the basin, i.e., lumped,
while the saturated hydraulic conductivity and Manning
roughness coefficient parameters are spatially
distributed. Following Vieux and Moreda (2003), these
parameter maps are perturbed by multiplying them by
scalars, thus preserving the spatial variability but
varying the magnitude. Vflo™ has improved channel
routing capabilities because flow is routed through
measured cross-sections. Rating curves are used to
represent the complex hydraulics in channels and over-
bank flow in natural channels, e.g., the Blue River.

2.4 Evaluation using a model parameter ensemble

In environmental modeling, uncertainty exists
with inputs, parameter values, model physics, and
observations of the state, or output. Ensemble
forecasting is based on the acknowledgment that the
physical system being modeled may not be fully
understood or observed, and thus it is not reasonable to
supply deterministic predictions. Ensembles are used to
predict the probability of future states by exploring
several possibilities as completely as possible. A model
parameter ensemble is used here to determine which
model input produces an outcome that proves most
similar to observations. This ensemble strategy avoids
the need to calibrate the parameters for each input
separately, store all the parameter settings, and then
verify the calibrated, deterministic predictions on an
independent data set. This probabilistic calibration
method recognizes that there may not be a single
minimum in the parameter response surfaces due to the
uncertainties inherent in environmental modeling.
However, there may be several different regions in the
parameter space that result in equally acceptable
simulations.

The 9 different QPE SUMS rainfall products
are input to the Vflo™ model independently. Probability
distributions are computed in this study using a 125-
member ensemble by perturbing the soil moisture,
saturated hydraulic conductivity, and Manning
roughness coefficient parameters. The soil moisture is
varied from 20% to 100% initial soil saturation in
increments of 20%. As discussed in section 2.3, scalars
are used to perturb the spatially distributed fields of
saturated hydraulic conductivity and Manning roughness
coefficient from their default values. The multipliers
range from 0.25 to 1.75 in increments of 0.375.
Simulations are then performed using a single model
structure for each parameter combination so that the
entire parameter space in the model has been explored.
The time of maximum discharge (TIME), maximum



discharge (PEAK), and the total volume of water
normalized by the basin area (VOLUME) are derived
from the observed and simulated hydrographs. The
125-member ensemble is then used to create discrete
probability distributions of the 3 aforementioned
hydrologic variables for each model input separately.
Ten classes are used for each probability distribution
where the minimum class and class interval is set to
25% of the observed PEAK and VOLUME values. The
minimum class for the TIME variable is set to the
observed TIME value minus 24 hours, and a class
interval of 5 hours is used.

Verification of probability forecasts for
multicategory events is accomplished using a ranked
probability score (RPS). The RPS is sensitive to
distance such that high probabilities assigned to events
that are far displaced from the observed outcome are
penalized more heavily than high probabilities assigned
to events closer to the outcome. The RPS relies on the
sum of squared errors so that values nearest to 0
indicate the best performance relative to observations.
With 10 classes being used to compute the probabilities,
the worst RPS score possible is 9. In the future, a
resampling test will be employed to determine the
significance levels.

3. RESULTS

The model parameter ensemble is used here
to evaluate 9 different precipitation inputs for 3
hydrologic events that occurred on the Blue River. For
the first event, precipitation began shortly after 1200
UTC 23 October 2002 and ended at 0300 UTC 25
October 2002 resulting in a PEAK of 56.7 cms at a
TIME of 0000 UTC 26 October 2002. The VOLUME
was 6.1 mm. The second and third events occurred in
October and December 2002 and were lighter than the
first event having PEAK values of 16.4 and 13.4 cms
and VOLUMES of 2.3 and 2.5 mm, respectively. It
should be noted that some data outages occurred
during the second and third cases resulting in the loss of
4 estimators.

For flash flood forecasting, it is important for a
model to be able to match the TIME, PEAK, and
VOLUME of a hydrograph. The TIME indicates when a
flood wave may impact a region of interest, while the
PEAK and VOLUME variables are related to the
magnitude of flooding. For the purposes of QPE
development, the VOLUME is the most informative
variable. Recall the outlet of the Blue River Basin is 200
km from a nearby radar, KTLX. The extent at which
each product may possess biases, especially at far
range, is important in assessing the relative strengths
and weaknesses of a particular QPE. These biases will
be revealed most explicitly upon analysis of the
VOLUME results.

Tables 1-3 list the RPS values for the TIME,
PEAK, and VOLUME with the averaged RPS values
summarized in the last column. The RAD ensemble
member has the lowest overall RPS value (indicated in
boldface) for the TIME variable. This isn’t too surprising
because radar data have the highest temporal and

TABLE 1. Ranked probability scores for the time at
which the maximum discharge occurred.

QPE

product Case1 Case2 Case3 AVG
GAG 1.10 3.05 0.94 1.70
RAD 1.02 0.65 0.84
RAD-G 0.32 1.68 1.00
RAD-LG 1.14 0.93 1.04
RAD-LGG 0.99 0.88 0.94
MS 2.14 3.65 2.90
MS-G 1.79 213 1.96
MS-LG 1.10 3.05 2.08
MS-LGG 1.04 2.11 1.58
TABLE 2. Ranked probability scores for the maximum
discharge.

QPE

product Case1 Case2 Case3 AVG
GAG 0.44 4.28 5.64 3.45
RAD 0.43 5.20 2.82
RAD-G 1.87 0.89 1.38
RAD-LG 045 5.64 3.05
RAD-LGG 2.42 5.54 3.98
MS 1.21 1.25 1.23
MS-G 0.43 0.69 0.56
MS-LG 0.44 4.30 2.37
MS-LGG 0.78 4.88 2.83
TABLE 3. Ranked probability scores for the flow
volume.

QPE

product Case1 Case2 Case3 AVG
GAG 1.86 5.14 5.91 4.30
RAD 1.88 5.94 3.91
RAD-G 4.11 2.66 3.39
RAD-LG 1.86 5.85 3.86
RAD-LGG 4.14 5.85 5.00
MS 0.51 0.70 0.61
MS-G 1.65 2.19 1.92
MS-LG 1.86 4.82 3.34
MS-LGG 2.58 5.97 4.28

spatial resolution and therefore should match the timing
of the flood crest the best. The MS and gauge-biased
algorithms incorporate data that have coarser temporal
resolutions which evidently affects the timing of the
predicted maximum discharge. Table 2 shows that the
MS-G product is capable of predicting the most accurate
peak discharge for the events studied. Notice how the
MS product outperforms the RAD product, and both of
these products benefit from a mean field bias
adjustment. However, the local bias adjusted products
(with and without removal of mean field bias) offer no



improvements and perform more similarly to the GAG
product. Figure 1 shows the proximity of rain gauges
around the Blue Basin. The density of rain gauges in
this location causes the local bias adjusted products to
place a high degree of weighting on the nearby rain
gauges. If these rain gauges are not representative of
the areal rainfall amounts in the basin, then errors can
actually be introduced in the local bias adjusted
products. Table 3 shows the QPE estimator that is able
to predict the total volume of water that is discharged at
the basin outlet most accurately is the MS product. For
the VOLUME variable, the inclusion of rain gauge data
and successive adjustment techniques offer no
improvements to the MS product. The RAD product, on
the other hand, does realize modest improvements with
a mean field bias adjustment and to a lesser degree a
local bias adjustment. For the PEAK and VOLUME
variables, the local bias adjustment with mean field bias
removed substantially reduces the MS and RAD product
accuracy and essentially reproduces the gauge-only
analysis.

4. DISCUSSION

This paper has developed a 125-member
model parameter ensemble by varying 3 sensitive
parameters identified in the Vflo™ distributed parameter
model. Precipitation inputs are supplied to the
hydrologic model from the QPE SUMS precipitation
algorithm.  This algorithm is currently capable of
producing 9 different precipitation products, with each
using various sensors including radar, satellite,
lightning, model output, and rain gauges. Each product
is input to the model independently and an ensemble of
hydrologic predictions is produced. The skill of each
initial condition is assessed by comparing simulations
with observations of streamflow and computing a ranked
probability skill score from the probability distributions.

The results from 3 hydrologic events on the
Blue River indicate that a mean field bias adjustment to
the RAD and MS products improves the model skill for
the PEAK and VOLUME variables. One notable
exception is that the MS algorithm possesses the most
skill for the VOLUME variable without any adjustment
from rain gauges. The non-adjusted MS product was
designed to reduce the range-dependency of
precipitation estimates for stratiform precipitation by
introducing calibrated satellite data in its scheme. From
this initial investigation, it appears that these biases
have been successfully mitigated with the MS product.
It is also interesting to note that the local bias adjusted
products have little skill and produce hydrologic
simulations similar to the gauge-only analysis.
Evidently, the point gauge accumulations do not
represent the areal rainfall accumulations or local biases
for the events studied.

The model parameter ensemble offers a new
perspective in evaluating the accuracy of initial
conditions. In this case, useful information about the
inclusion of satellite data and rain gauge adjustment
strategies in QPE products has been made available to
the developers. Future studies will explore the relative

skill of a model parameter ensemble versus an initial
condition ensemble in hydrologic modeling. An initial
condition ensemble is made possible through the use of
the 9 members available from the QPE SUMS
precipitation algorithm. Ultimately, an ensemble that
incorporates the uncertainty in the rainfall estimates and
in the model parameters may be necessary to
accurately portray the total prediction uncertainty.

5. ACKNOWLEDGEMENTS

Funding for this research was provided under
NOAA-OU Cooperative Agreement #NA17RJ1227.
Support from the US Department of Education’s
Graduate Assistantship in Areas of National Need
provided for the registration, publication, and travel
costs.

6. REFERENCES

Ciach, G. J. and W. F. Krajewski, 1999:
Conceptualization of radar-raingage comparisons
under observational uncertainties. J. Appl. Meteor.,
38, 1519-1525.

Droegemeier, K. K. and co-authors, 2000: Hydrological
aspects of weather prediction and flood warnings:
Report on the ninth prospectus development team
of the U. S. Weather Research Program, Bull.
Amer. Meteor. Soc., 81, 2665-2680.

Gourley, J. J., J. Zhang, R. A. Maddox, C. M. Calvert,
and K. W. Howard, 2001: A real-time precipitation
monitoring algorithm - Quantitative Precipitation
Estimation and Segregation Using Multiple Sensors
(QPE SUMS). Preprints Symp. on Precipitation
Extremes: Prediction, Impacts, and Responses,
Albuquerque, Amer. Meteor. Soc., 57-60.

Gourley, J. J., R. A. Maddox, K. W. Howard and D. W.
Burgess, 2002: An exploratory multisensor
technique for quantitative estimation of stratiform
rainfall. J. Hydrometeor., 3, 166-180.

Vieux, B. E. and N. Gauer, 1994: Finite Element
Modeling of Storm Water Runoff Using GRASS
GIS, Microcomputers in Civil Engineering, 9, 263-
270.

Vieux, B. E. and F. Moreda, 2003 : Ordered physics-
based parameter adjustment of a distributed
model. In: Calibration of Watershed Models, Eds.
Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau,
A.N., & Turcotte, R. American Geophysical Union,
Washington, D.C., USA, p. 267-281.

Vieux, B. E. and J. E. Vieux, 2002: Vflo™: A real-time
distributed hydrologic model. Proceedings of the
2nd Federal Interagency Hydrologic Modeling
Conference, Las Vegas, Nevada.



