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1. INTRODUCTION 
 Investigators frequently acquire observations of 
raindrop sizes and seek to describe the drop-size distri-
butions (DSDs) by analytical expressions, the exponen-
tial or gamma function being most common. Moment 
methods to estimate parameters for the DSD functions 
have become more or less traditional, even though 
Haddad et al. (1996, 1997) have pointed out that the 
methods are biased. The intuitive appeal of such meth-
ods is almost irresistible, and the associated mathe-
matical manipulations lend a convincing aura. However, 
the methods are indeed biased – in the statistical sense 
that the expected values of the “fitted” parameters differ 
from the parameters of the underlying raindrop popula-
tions – and so lead to erroneous inferences about the 
characteristics of the DSDs being sampled. 
 The bias in the moment methods can be demon-
strated by testing their ability to recover parameters of 
known DSDs from which samples are taken. This must 
be done by computer simulation, as the DSDs in nature 
are inherently unknown. The simulations herein use a 
Monte Carlo simulation procedure similar to that de-
scribed in Smith et al. (1993); the Appendix below 
summarizes the procedure. 

Fig. 1:  Example of sampling distribution for moment 
M6 (Z), showing cumulative number of cases with 
sample Z larger than value indicated on abscissa. 
Population DSD: gamma, µ = 2. Mean sample size: 
50 drops. Median value –4.1 dB; (logarithmic)  mean 
value –3.84 dB. 

 Figure 5 of Smith et al. (1993) showed that the 
maximum drop size in an exponential DSD is rarely ap-
proached in samples of even hundreds of drops. Figure 
2 here shows a histogram of the largest drop xmax 
(= Dmax/Dm) in samples averaging 50 drops from a 
gamma DSD with µ = 2. There is clearly no basis for 
assuming truncation of the underlying DSD at the 
maximum observed drop diameter, with samples of 
such sizes. 

2. CHARACTERISTICS OF SAMPLING  
 DISTRIBUTIONS 
 Sampling from long-tailed DSDs of the exponential 
or gamma types exhibits certain general features. Sam-
ple values of the DSD moments Mi (i = 3 gives LWC; 
i = 6 gives Z) are unbiased: the expected, or mean, 
sample value of Mi corresponds to that of the drop popu-
lation being sampled. However, the sampling distribu-
tions are skewed, as shown for exponential DSDs in 
Smith et al. (1993). The skewness is greater for higher-
order moments and for smaller sample sizes. Sampling 
from gamma distributions with positive shape parameter 
(µ) displays the same general features, but the skew-
ness is reduced. Figure 1 shows an example of the 
skewness in the Z sampling distribution for a gamma 
distribution with µ = 2. 

 

 Sampling the small drops can be a major instru-
mental problem for exponential DSDs, but is of less 
concern for gamma DSDs. However, adequately sam-
pling the relatively rare large drops remains a concern. 
Regardless of the (population) value of µ, fewer than 
one drop in 100 in a DSD is larger than D = 1.5 Dm, 
where Dm is the mass-weighted mean diameter, and 
fewer than one in 1500 is larger than D = 2 Dm. How-
ever, for µ = 2 the drops larger than 1.5 Dm contribute 
more than ten percent of the LWC and almost half the 
reflectivity factor. Consequently, the relatively large but 
relatively rare drops tend to be important in determining 
the moments of physical significance. 

Fig. 2:  Example of sampling distribution for maxi-
mum drop size xmax = Dmax/Dm. Population DSD: 
gamma, µ = 2. Mean sample size: 50 drops. Median 
value 1.34; mean value 1.380. 
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3. MOMENT ESTIMATORS 

 The use of moment methods to estimate parame-
ters for DSD functions evidently began with Waldvogel’s 
(1974) paper on the “N0 jump” of DSDs. He used mo-
ments M3 and M6 (i.e. LWC and Z) to determine pairs of 
parameters for exponential functions that purportedly 
represented the observed DSDs. This was surely one of 
the greatest mistakes he ever made, for distributions 
“fitted” in this way do not look at all like the samples 
upon which they are based. Figure 3 shows an example 
from raindrop camera data illustrating the large discrep-
ancies involved. 

 
 More recently, estimators involving three moments 
have been used in attempts to fit gamma distributions to 
DSD observations. Examples include Ulbrich (1983); 
Kozu and Nakamura (1991); Smith (1993); Tokay and 
Short (1996); and Ulbrich and Atlas (1998). These pro-
cedures can produce closer fits to the observations, at 
least for part of the size spectrum (Fig. 3). However, the 
apparent closeness of fit is misleading, because the 
fitted distributions typically do not resemble the original 
drop populations from which the samples are taken. 

4. THE BIAS IN MOMENT ESTIMATORS 
 As noted, Haddad et al. (1996, 1997) point out that 
moment estimators are biased, and worthy statisticians 
are appalled at the idea of using this approach. That 
estimates of DSD parameters obtained in this way are 
biased was actually indicated in Smith et al. (1993). 
Figure 4, reproduced from that paper, compares sample 
estimates of Dm to the value of Dm for the exponentially-
distributed population from which the (simulated) sam-
ples were drawn. In this example, more than 80% of the 
values are underestimates, and the mean (the expected 
value) is about 78% of the population value. In terms of 
the more familiar exponential slope parameter Λ 
(= 4/Dm), this means that Λ is generally overestimated 

and the “fitted” DSDs will contain too many small drops 
and too few large ones. 

Fig. 4:  Example of sampling distribution for mass-
weighted mean diameter Dm. Population DSD: ex-
ponential. Mean sample size: 20 drops. (From Smith 
et al., 1993). 

 The bias in the moment estimators for gamma dis-
tributions is also substantial. Figure 5 shows the distri-
bution of estimated values of Dm for samples averaging 
20 drops (i.e. NT = 20) from a gamma distribution with µ 
= 2. Here just 74% of the values are underestimates, 
and the expected value is 90.5% of the population 
value. The bias decreases, along with the skewness of 
the sampling distributions, as the population shape pa-
rameter µ increases, and also decreases with increasing 
sample size. 

Fig. 3:  Example of drop-size data from Illinois State 
Water Survey raindrop camera (Majuro, Marshall I., 
0930 16 May 1959). Ordinate shows “inverse cumu-
lative” number concentration NL(D) of drops of di-
ameter D or larger. Unlabelled straight line shows 
“Waldvogel fit” based on M3 and M6. Asterisks indi-
cate “moment-method fit” based on M3, M4, and M6.

 

Fig. 5:  Example of sampling distribution for “mo-
ment-method fit” of Dm. Population DSD: gamma, µ 
= 2. Mean sample size: 20 drops. Median value 
0.87; mean value 0.905. 

 Of greater concern is the bias in the estimates of 
the gamma shape parameter µ. Figure 6 shows a distri-
bution of values of µ estimated using the moments M3, 
M4, and M6, as employed by Ulbrich (1983), Kozu and 
Nakamura (1991), and Tokay and Short (1996). In this 
simulation the population PDF had µ = 2 and nearly all  

 



of the sample values of µ are overestimates – most 
drastically so. As the bias in the moment estimators 
tends to overestimate µ and underestimate Dm, the ten-
dency will be to overestimate the more customary 
“slope” (scale) parameter λ. The hybrid approach used 
by Testud et al. (2001) does not employ a moment-
based calculation to determine µ, but the estimators for 
their other gamma parameters (Dm and No*) are biased. 
 

This bias can be quite misleading. One can sample 
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 Figure 9 shows another strong relationship found in 
the simulations, between the moment estimate of µ and 
the largest drop xmax in the sample. Larger values of xmax 
lead to smaller estimates of µ, which are generally 
closer to the population value. This relationship appears 
to be insensitive to the sample size, and if it turns out to 
be equally insensitive to the population value of µ (or if 
values of µ in nature vary little) it would be subject to 
experimental verification. Larger samples (i.e. higher NT) 
generally lead to larger values of xmax, so the value of 
increased sample size in reducing the bias in estimates 
of µ is evident. Drop samples sufficiently large to de-
scribe the large-drop end of the size spectrum ade-

the expected value of µ for samples of this size, drawn 
from an exponential DSD (µ = 0), is about µ = 7.7. Thus, 
sampling the DSD with samples of this size will not re-
veal that the underlying DSD is exponential. 
 As the sample size increases, the bias diminishes, 
so that with very large samples the moment methods 
may give approximations of the population parameters 
that become sufficiently accurate for practical purposes. 
Further simulations a
quired for this to occur, but thus far it ap
samples required are in the hundreds, if not thousands, 
of drops. It is also worth noting that Joss and Gori 
(1978) found that observed DSDs approach the expo-
nential form as the sample size is increased by avera

data. 
INGS 

 Ulbrich (1983) and others have noted a correlation 
between the gamma distribution parameters n1 and λ in 
data from DSD observations. In the present notation, 

n1 = NT (µ+4)µ+1 / (µ! Dm
µ+1) 

T sampling variation of Dm is relatively small (Fig. 5) 
compared to that of µ (Fig. 6), so “fitted” values of λ will 
depend mostly on µ. Figure 8 illustrates a strong corre-
lation between n1 and µ arising from sampling variations 
alone – i.e. there is no physical significance to this cor-
relation.  

Fig. 6:  Example of sampling distribution for gamma 
shape parameter µ, based on M3, M4, and M6. Popu-
lation DSD: gamma, µ = 2. Mean sample size: 50 
drops. Median value 6.6; mean value 7.04. 

M4, and M6. Population DSD: gamma, µ = 2. Mean
sample size: 50 drops. 

 
from what is actually an exponential DSD; use moment 
methods in an attempt to “fit” parameters of a gamma 
distribution to the observations; find (biased) high values 
of µ; and conclude, quite erroneously, that the popula-
tion DSD was gamma after all. Figure 7 shows an ex-
ample where a sample of 50 drops was drawn from an 
exponential DSD. While the gamma M3, M4, M6 fit 
matches part of the sample distribution reasonably well, 
it in no way corresponds to the population from which 
the sample was drawn. The “fitted” value of µ is 7.66; 

Fig. 7:  A sample of 50 drops drawn from an exponen-
tial population (population DSD indicated by unlabelled 
straight line). Gamma curve with asterisks indicates 
“moment-method fit” based on M3, M4, and M6. Trian-
gles indicate “Waldvogel fit” based on M3 and M6. Or-
dinate as in Fig. 3. 

Fig. 8:  Illustration of correlation (resulting strictly
from sampling variation) between gamma parame-
ters n1 and µ from “moment-method fit” based on M3,

 



 

quately are therefore essential if moment methods are 
to yield reasonable estimates of the DSD parameters. 
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6. CONCLUSIONS 

 Moment estimators fo
Appendix: Summary of Simulation Procedure 

for Raindrop Sampling 
 
 First write the drop-size distribution n(D) as the 
product of the (average) total drop concentration  

ti
values of the DS
are much larger than those commonly available. In par-

ar, estimates of the gamma shape parameter µ tend 
e far larger

NT (m-3) and the probability density function (PDF) of 
drop diameter D: 

n(D) = NT (PDF) 

According to Mielke (1976), the gamma PDF is 
 

PDF = (λµ+1 / µ!) Dµ exp (-λD) 
 

In terms of the mass-weighted mean diameter Dm, this 
becomes 
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ing DSD from which the samples are taken. The bias is 
test for small sample sizes, and also greater when 
er-order moments of the observed DSDs are used 
e fitting process (not demonstrated here). 

 Moment methods might provide estimates of DSD 
meters of sufficient accuracy if very large sam
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ng that, some alternative approach to fitting the ob-
ed DSDs must be used. Haddad et al. (1996, 1997) 
ested a maximum likelihood approach, wh m
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be satisfactory if the sampling errors are not too great. 
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