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1.  INTRODUCTION  
 

Improvement of Quantitative Precipitation 
Estimation (QPE) is one of the primary benefits of a 
dual-polarization radar. Several different polarimetric 
relations for rain rate estimation have been suggested 
during the last two decades. These relations utilize 
differential reflectivity ZDR, specific differential phase 
KDP, and conventional radar reflectivity factor Z in 
different combinations. The relations were obtained for 
different radar wavelengths using either simulated or 
measured drop size distributions (DSDs) with various 
assumptions about the size and shape dependence of 
raindrops.  

The performance of many suggested polarimetric 
rainfall estimation techniques has been tested on 
several extended data sets from Oklahoma (Ryzhkov 
and Zrnic 1996, Ryzhkov et al 2000, Ryzhkov et al 
2001), Colorado and Kansas (Brandes et al 2001), 
Florida (Brandes et al 2002) for S-band radars, Australia 
(May et al 1999) for C-band radar, and Virginia 
(Matrosov et al 2002) for X-band radar. 

All of the above validation studies have shown that 
(a) there is an improvement in rainfall estimation if a 
dual-polarization radar is used and (b) polarimetric 
rainfall estimation techniques are more robust with 
respect to DSD variations than are the conventional 
R(Z) relations.  At the moment, however, there is no 
consensus on the degree of improvement and the 
choice of an optimal polarization relation. The most 
significant improvement was reported in the latest study 
in Oklahoma (Ryzhkov et al 2002a) using the R(KDP, 
ZDR) relation. Relatively modest improvement was 
observed in Florida (Brandes et al 2002) with the best 
results obtained from the R(Z, ZDR) relation. 

As part of the evolution and future enhancement of 
the WSR-88D, the National Severe Storms Laboratory 
recently upgraded the KOUN WSR-88D radar to include 
polarimetric capability. In this paper, we assess the 
quality of rainfall estimation with the new radar using a 
dense micronetwork of 42 gages in the area 
approximately 40 x 30 km in central Oklahoma. Various 
polarimetric rainfall algorithms have been tested for 
large data set. 
 
2.  RADAR DATA SET 
 

Data collection with the WSR-88D KOUN prototype 
dual-polarized radar started on 19 March 2002. Since 
then, the polarimetric data have been collected and 
archived for about 80 days of observation. Ancillary data 
from the operational KTLX WSR-88D radar have been  
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collected for the majority of precipitation events. We 
have selected for in-depth analysis a subset of 20 rain 
events with 40 hours of observations for which the ARS 
gages recorded sizeable amount of precipitation. This 
subset consists of 14 convective and 6 stratiform rain 
cases observed from June 2002 to May 2003. 

Radar variables Z, ZDR, KDP, and the cross-
correlation coefficient ρhv were estimated using quite 
short dwell time (48 radar samples) in order to satisfy 
the NEXRAD requirement for rapid antenna rotation rate 
(3 rpm) and the 1° azimuthal resolution. Update times 
for rain rate estimates, however, were different for the 
cases observed in 2002 and 2003. In 2002, volume 
coverage pattern (VCP) included only two lowest 
elevation tilts: 0.5° and 1.5°, whereas in 2003 the VCP 
consisting of 14 – 15 elevation angles was 
implemented. Thus, the update times for rain rate 
estimates were about 2 and 6 minutes in 2002 and 2003 
respectively. Range resolution of the raw radar 
polarimetric data is 267 m and total number of range 
gates is 1125.  

The ρhv threshold of 0.85 is used to filter out the 
echoes of non-meteorological origin (ground clutter, AP, 
biological scatterers, chaff, etc). Radar reflectivity 
calibration for the KOUN radar was performed either by 
matching one-hour areal rainfall estimate using the 
standard R(Z) algorithm with the one obtained from the 
operational KTLX radar, or by applying a polarimetric 
consistency technique (Gorgucci et al 1999). The latter 
capitalizes on interdependence of Z, ZDR, and KDP in 
rain medium. Radar reflectivity biases retrieved with 
these two methods usually did not differ by more than 1 
dB.  

We compare one-hour rain totals obtained from the 
radar and gages that are located at the distances 50 to 
88 km from the KOUN radar. Both point and areal 
estimates of the one-hour rain accumulation are 
examined. By point estimate we mean an hourly total 
averaged over small-size area (1 – 1.5 km) centered on 
individual gage. Areal mean hourly total or areal mean 
rain rate is determined as a sum of hourly 
accumulations from all gages that recorded rain divided 
by the number of such gages.  

To assess the quality of different polarimetric rain 
algorithms, we prefer to examine absolute differences 
between radar and gage estimates (expressed in mm) 
rather than standard fractional errors which are heavily 
weighted with small accumulations. Rainfall estimates 
are characterized by the bias B = <∆>, standard 
deviation SD = <|∆-B|2>1/2, and the rms error 
RMSE=<|∆|2>1/2, where ∆ = TR – TG is a difference 
between radar and gage hourly totals for any given 
radar – gage pair and brackets mean averaging over all 
such pairs. 



3.  RAINFALL ALGORITHMS AND THEIR 
PERFORMANCE. 
 

Two groups of polarimetric rainfall algorithms have 
been tested. One group includes almost all power law 
R(KDP), R(Z,ZDR), and R(KDP,ZDR) relations  that we 
found in literature for S band. Another group consists of 
similar algorithms that we derived using multi-year 
statistics of DSD measurements in central Oklahoma.  

Four different assumptions about raindrop shape – 
size dependencies were made: (1) equilibrium shapes 
defined by Beard and Chuang (1987), (2) “oscillating 
raindrop” shapes from Bringi et al (2003), (3) the shapes 
specified by Brandes et al (2002), and (4) linear 
dependence of the drop axis ratio on equivolume 
diameter. An average slope β = 0.052 mm-1 of a linear 
dependence was found in (Ryzhkov and Schuur 2003) 
from polarimetric radar observations using the approach 
described by Gorgucci et al (2000). In all simulations, 
we assumed that the drops are canted with the mean 
canting angle equal to zero and the width of the canting 
angle distribution of 10°. 

We started our testing from the simplest one-
parameter algorithms R(Z) and R(KDP). A standard 
NEXRAD relation is used as the R(Z) algorithm 

 
R(Z) = 1.70 10-2 Z0.714  (1) 

 
where Z is expressed in mm6m-3, R – in mm h-1. Values 
of Z were threshoded at the level of 53 dBZ in order to 
mitigate hail contamination. Among numerous R(KDP) 
relations, we selected the one that performed best  in 
terms of overall RMS errors. 
 

R(KDP) = 45.3 |KDP|0.786 sign(KDP),       (2) 
 
where KDP is expressed in deg km-1. This relation was 
obtained using 17470 1-minute DSD measured with a 
2D-video disdrometer under assumption of raindrop 
shape defined by Brandes et al (2002). There is an 
obvious overall improvement in rainfall estimation when 
we switch from R(Z) to R(KDP) (see Table 1). This 
 
Table 1. Mean biases, standard deviations, and RMS 
errors of the radar estimates of one-hour rain totals (in 
mm) and areal mean rain rates (in mm h-1) for different 
radar rainfall algorithms. 
 
Algorithm Bias Point 

SD 
Point 
RMSE 

Areal 
SD 

Areal 
RMSE 

R(Z) 0.32 4.18 4.20 2.76 2.81 
R(KDP) -0.55 3.63 3.68 2.20 2.23 
R(Z,ZDR) -0.81 2.86 2.98 1.54 1.72 
R(KDP,ZDR) -0.86 2.94 3.06 1.33 1.57 
R(Z,KDP,ZDR) -0.10 2.80 2.80 1.11 1.11 
  
improvement is especially well pronounced for heavy 
rain events for which rain is often mixed with hail. The 
R(KDP) estimates are noisier than the R(Z) estimates for 
light rain with R < 5 – 6 mm h-1. Both R(Z) and R(KDP) 
relations usually underestimate light stratiform rain. 
Notable is high correlation between these two rainfall 
estimates and their strong dependence on the net value 

of differential reflectivity <ZDR> that is defined as a 
weighted average ZDR for a particular hour over  a whole 
gage network. Each ZDR measurement is weighted 
proportionally to rain rate computed from the R(Z) 
relation. Thus, the net ZDR characterizes most intense 
part of rain for a given hour in the gage area. Fig. 1 
shows the net ZDR, as well as the ratios of hourly areal 
totals obtained from the radar and gages as functions of 
hour of observations ranked in a chronological order. 
First 32 hours of observations conducted in 2002 are 
represented in Fig. 1.  

 
Fig. 1 Net ZDR and ratios of mean areal rain rates from 
radar and gages versus hour of observations. 
 

It is quite clear from Fig. 1 that both R(Z) and 
R(KDP) tend to underestimate rain with DSD dominated 
by smaller drops (low ZDR) and overestimate it if rain is 
characterized with large raindrop median diameter (high 
ZDR). This means that ZDR should be involved in rain 
measurements together with Z or KDP. 

As a second step, we tested various two-parameter 
algorithms R(Z,ZDR) and R(KDP,ZDR). After examining the 
performance of about dozen different two-parameter 
algorithms, we selected the best ones for each 
category:  
 

R(Z,ZDR) = 1.42 10-2 Z0.770 Zdr
-1.67         (3) 

 
and 
 

R(KDP,ZDR) = 136 |KDP|0.968Zdr
-2.86 sign(KDP),    (4) 

 
where Zdr is differential reflectivity expressed in linear 
units. Eq (3) was derived using a local DSD statistics 
with the assumption of equilibrium drop shapes, 
whereas Eq (4) was taken from Brandes et al (2002). 

Although both algorithms (3) and (4) produce larger 
overall biases in rain measurements, they apparently 
outperform the one-parameter algorithms in terms of 
standard deviation and RMS errors (Table 1). The 
R(KDP,ZDR) algorithms perform better than the R(Z,ZDR) 
relations for areal rain estimation and higher rain rates, 
whereas the R(Z,ZDR) algorithm is a leading contender 
at low rain rates where the KDP estimates are quite 
noisy. Since both Z and ZDR are strongly affected by the 
presence of hail, one has to be very cautious using 
these variables for estimation of heavy rain which is 
likely contaminated with hail. 



Combining the merits of different algorithms, we 
eventually come up with the “synthetic” one that 
suggests the use of different combinations of radar 
variables depending on rain rate estimated with the 
conventional R(Z) relation. We denote the synthetic 
algorithm as a R(Z,KDP,ZDR) relation. The following is a 
description of the proposed algorithm. 
 
If R(Z) < 6 mm h-1, then 

R = R(Z)/(0.4+5.05 (Zdr – 1)1.17)  ;               (5) 
 
if 6 < R(Z) < 50 mm h-1, then 

R = R(KDP)/(0.4+3.48 (Zdr – 1)1.72)  ;          (6) 
 
If R(Z) > 50 mm h-1, then  R = R(KDP), 
 
where R(Z) and R(KDP) are determined by Eq (1) and 
(2). The expressions (5) and (6) were obtained 
empirically by finding best fit to the dependences 
TR(Z)/TG = f (<Zdr>) and TR(KDP)/TG = f (<Zdr>) i.e., using 
the approach described by Fulton et al (1999). Only a 
portion of a whole data set was used for such matching. 
This subset consists of rain events observed in 2002 
and accounts for about 70% of total rain in a whole data 
set. 

The R(Z,KDP,ZDR) algorithm is structured in such a 
way that the combination of KDP and ZDR is used for 
estimation of about half of all rainfall in Oklahoma 
according to the DSD statistics. It is known from 
simulations that the R(KDP,ZDR) algorithm is least 
affected by DSD variations and uncertainties in raindrop 
shapes and canting compared to the R(Z), R(KDP), and 
R(Z,ZDR) relations. At lower rain rates (< 6 mm h-1), the 
combination of KDP and ZDR is less efficient because KDP 
becomes too noisy. Therefore, Z (instead of KDP) should 
be used jointly with ZDR. For very high rain rates (> 50 
mm h-1), both ZDR and Z are very likely contaminated 
with hail, and the synthetic algorithm relies exclusively 
on KDP. Another advantage of such approach is that 
reflectivity calibration is required only for light rain that 
accounts for about 32% of annual rain in Oklahoma. 

It is not surprising that the R(Z,KDP,ZDR) algorithm 
outperforms all  others according to all 5 statistical 
criteria: it has lowest bias, standard deviations, and 
RMS errors for point and areal rainfall estimates (Table 
1). Fig. 2 – 4 show scatterplots of hourly totals obtained 
from the R(Z) and R(Z,KDP,ZDR) relations versus one-
hour gage accumulations for individual radar-gage 
comparisons, areal estimations, and flash flood event on 
14 May 2003 that produced highest hourly amount of 
precipitation over the test area. The synthetic 
polarimetric algorithm demonstrates particularly 
significant improvement for areal rain estimation (2.5 
times in terms of RMSE) and for flash flood event.  

The scattergram in Fig. 2b shows about dozen of 
apparent outliers (out of total 963 points) even for the 
best polarimetric algorithm. Notably, practically all 
outliers belong to only one rain event on 20 May 2003 
which was characterized by extremely localized strong 
convection. Detailed analysis of rain accumulation fields  

 
Fig. 2 One-hour individual gage rain accumulations 
versus their estimates from the R(Z) and R(Z,KDP, ZDR) 
algorithms (20 rain events, 40 hours of observations) 

 
Fig.3 Mean areal rain rates from gages versus their 
estimates from the R(Z) and R(Z,KDP,ZDR) algorithms 
(20 rain events, 40 hours of observations). 



 
Fig. 4 Same as in Fig. 2 but for flash flood event on 14 
May 2003. 
 
indicates that radar – gage mismatches occur in the 
areas of strong gradients of rain. Bearing in mind that all 
hourly rain totals in 2003 were calculated from only 9 – 
10 successive scans, we attribute such a discrepancy to 
a sampling problem rather than to deficiency of the 
algorithm. The influence of radar sampling is 
substantially alleviated in areal rain estimates (Fig. 3b). 

Although relations (5) and (6) were derived 
empirically to optimize the performance of the synthetic 
algorithm for the 2002 rain events, the R(Z,KDP,ZDR) 
algorithm proves to be the best for the 2003 
observations and in comparisons with the Oklahoma 
Mesonet gages that are located at the distances closer 
than 100 – 120 km form the radar (Giangrande and 
Ryzhkov 2003). 
 
4.  CONCLUSIONS 
 

Testing different polarimetirc methods for rainfall 
estimation using a dual-polarization prototype of the 
WSR-88D operational radar shows that the best 
polarimeitric rainfall algorithm R(Z,KDP,ZDR) 
demonstrates superior performance compared to the 
conventional R(Z) relation. At the distances less than 
100 km from the radar, the RMS error of the one-hour 
total estimate is reduced by factor of 1.5 for point 
estimates and by factor 2.5 for areal rainfall estimates. 

Most significant improvement is achieved in areal 
rainfall estimation and in measurements of heavy 
precipitation. These results have important practical 
implications for (a) river flash flooding forecast and 

management that require reliable measurements of 
areal rain accumulations regardless of rain intensity and 
(b) urban flash flooding forecast that requires accurate 
estimation of heavy rain with high spatial resolution. 
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