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1. Introduction 
 

Traditional methods of calculating rotational 
shear from Doppler radial velocity data can give 
results that vary widely from the true value of 
shear for a vortex.  Some factors that must be 
considered include noisy data and the offset of 
sample volumes from the center of rotation.  
This work illustrates preliminary results from a 
two-dimensional, local, linear least squares 
(LLSD) method to minimize the large variances 
in rotational and divergent shear calculations. 
 

Besides creating greater confidence in the 
value of intensity of meteorological features that 
are sampled, the LLSD method for calculating 
shear values has several other advantages.  
The LLSD removes many of the radar 
dependencies involved in the detection of 
rotation and radial divergence (or radial 
convergence) signatures.  Thus, these 
derivatives of the radial velocity field may be 
viewed in three-dimensional space or used as 
input to multi-sensor meteorological applications 
that are not single-radar based.  Additionally, 
fields of these radial estimates of rotation and 
divergence have specific signatures when 
boundaries or circulations are sampled.  This 
manuscript describes how the derivatives are 
calculated as well as how the rotational LLSD 
compares with the less-robust (but operationally 
used) “peak-to-peak” estimates of azimuthal 
shear.  The accompanying poster presentation 
will describe the divergent LLSD and examples 
of data mining techniques that use LLSD for 
boundary and rotation detection. 
 
2. Local, Linear, Least Squares Derivatives 
 

Elmore et al. (1994) describe a method for 
estimating divergent shear from single Doppler 
radar data for use in calculating headwind loss 
estimates for aircraft that encounter microbursts.  
The rotation portion of the derivative was also 

derived by Elmore et al., but not utilized for 
microburst detection.  The LLSD technique was 
implemented in NSSL’s Damaging Downburst 
Prediction and Detection Algorithm (Smith et al. 
2003) for detecting low-level outflows and mid-
level convergence and rotation in storm cells.  
Mitchell and Elmore (1998) first explored the 
uses of the LLSD for identifying regions of high 
shear in mesocyclones and tornadic vortex 
signatures. 
 

Elmore et al. (1994) show that the estimates 
of radial divergence (ur) and rotational shear 
(us) can be calculated on a local neighborhood 
surrounding each range gate, where: 
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Here, Vij is the radial velocity, ∆r is the pulse 
volume width, sij is the azimuthal distance from 
the center of the kernel to the point (i,j), and wij 
is a uniform weight function.  Because ur and us 
are derived from only the radial component of 
the wind, they are approximations of one half the 
horizontal divergence and vertical vorticity (“half 
vorticity”, hereafter), respectively, assuming a 
symmetric wind field. 
 

In order to make LLSD calculations on a 
field of radial velocities, the data are passed 
through a 3x3 median filter to reduce noise.  
Then, because the LLSD calculations require a 
complete kernel of data in order to produce a 
result, missing radial velocities are filled in with 
the median of the four adjacent range gates.  
Finally, the fields of ur and us are calculated.  



The size of the kernel that is used in the 
calculation is variable, and is described below. 
 
3. LLSD of Rotational Shear 
 

LLSD of rotational, or azimuthal, shears are 
calculated for simulated circulation signatures of 
different sizes and at different ranges from a 
hypothetical radar in order to compare with 
traditional methods of estimating the strength of 
circulations.  We use a Rankine combined 
vortex model to generate simulated circulation 
signatures in the Doppler radial velocity field 
(Wood and Brown 1997).  We superimpose 2 
ms-1 uniform noise on the radial velocity field to 
test the robustness of the LLSD calculations. 

 
We compare the LLSD values to the more 

traditional “peak-to-peak” azimuthal shear 
calculation, given by 
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where Vmax and Vmin are the maximum outbound 
and minimum inbound radial velocities (on 
opposite sides of a circulation), respectively, and 
d is the distance between those two peaks.  For 
the LLSD calculations, we choose three different 
kernel sizes that are each 3 range gates deep 
and approximately 2500 m, 5000 m, or 8000 m 

wide.  Thus the number of radials used in the 
calculation varies with range from the radar, 
although a minimum of three radials of data are 
required for a complete calculation.  Kernels that 
use a fixed number of radials at all ranges 
usually only provide good shear estimates in a 
small percentage of those ranges. 

Figure 1: Mean and 95% confidence limits for 
LLSD and peak-to-peak estimates of azimuthal 
shear at the vortex center for a 5 km diameter 
vortex with half vorticity of 0.01 s-1. 

Figure 2: Mean and 95% confidence limits for 
LLSD and peak-to-peak estimates of azimuthal 
shear at the vortex center for a 8 km diameter 
vortex with half vorticity of 0.01 s-1. 

 
To test the variability of the three LLSD 

kernels, we generate synthetic radial velocity 
signatures of vortices at ranges every 5 km from 
20 km to 200 km.  Because radar data suffer 
from many imperfections, including noise and 
sampling issues that can affect azimuthal shear 
values (Wood and Brown 2000), 1000 vortices 
of the same size and strength are generated at 
each range, each with different noise patterns 
and azimuthal offsets to the center of the 
simulated vortex.  This allows for calculation of 
mean azimuthal shear values and 95% 
confidence intervals for the three LLSD kernels 
and uas. We test these calculations on simulated 
vortices of three different diameters: 2.5 km, 5 
km, and 8 km. 
 

Figure 1 shows the 2500m LLSD kernel and 
peak-to-peak azimuthal shear estimates for a 5 
km diameter vortex with half vorticity of 0.01 s-1.  
In this case, the mean LLSD value is within 
about 20% of the true value out to about 140 
km, with a much smaller variance than that of 
the peak-to-peak azimuthal shear calculations.  



These values drop with range because of the 
geometry of the radar beam – circulations are 
not well sampled at long ranges.  For a larger-
scale 8 km diameter vortex (Fig. 2) sampled with 
the 2500 m kernel, the mean LLSD values are 
within 5% of the true value out to about 150 km.  
For brevity, results from the 5000 m and 8000 m 
kernel are not shown.  However, these larger 

kernels tended to underestimate the strength of 
smaller vortices compared to the 2500 m kernel. 

Figure 3:  The distribution of range positional 
errors for the 2500 m LLSD kernel (top) and 
the peak-to-peak azimuthal shear estimate 
(bottom) for a 5 km diameter vortex.  The 
center grey line is the median, the box is the 
interquartile range (IQR), the whiskers are the 
lesser of 1.5x(IQR) or the data range, and the 
single dots are outliers. 

Figure 4:  Same as Fig. 3, except for azimuthal 
position error. 

Because we use synthetic radar data, the 
true location of the center of the circulation is 
known. Range and azimuthal position errors 
were calculated for both the LLSD and peak-to-
peak methods.  For azimuthal shear, the center 
of circulation was considered to be halfway 
between velocity absolute maxima on each side 
of the circulation.  The NSSL Mesocyclone 
Detection Algorithm (Stumpf et al 1998) uses 
this method to determine the center of a 
circulation.  For the LLSD rotation, the center of 
circulation was considered to be at the LLSD 
rotation maximum.   
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The errors in range (Fig. 3) for both methods 
are quite similar, although the variance is 
smaller for the LLSD estimate.  However, the 
azimuthal distance errors (Fig. 4) for the peak-
to-peak method are significantly larger than the 
LLSD.  Additionally, the distribution of the peak-
to-peak location estimates is not Gaussian.  This 
is illustrated in Fig. 5.  While the LLSD position 
estimates are clustered around the center of the 
diagram, there are three distinct groupings for 
the peak-to-peak data.  Because the peak-to-
peak method only uses two data points in its 
calculations, it is highly susceptible to errors 
caused by the radial offset from the center of the 
circulation and noise. 

 
4. Conclusion 
 

The local, linear, least squares approach to 
calculating radial velocity derivatives is a vast 
improvement over the frequently-used but 
simplistic and grossly inaccurate method of 
calculating shear from two data points.  The 
LLSD provides relatively smooth fields that may 
be used in other applications to identify features 
such as boundaries and vortices, as well as to 
accurately assess their strength and position.    
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Figure 5: Scatter diagram of positional errors 
for the peak-to-peak azimuthal shear estimate 
and the LLSD estimate of the center of 
circulation for a vortex at 120 km range. 
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