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1. INTRODUCTION

The rainfall on the ground can be potentially depen-
dent on the four dimensional (space-time) structure of
precipitation aloft. Therefore the rainfall estimation
on the ground can be treated as a function approxi-
mation problem. It has been demonstrated that neural
networks can be successfully applied to the problem of
radar rainfall estimation, modeling it as a function ap-
proximation problem. Xiao and Chandrasekar (1995,
1997) first successfully applied the back-propagation
(BP) neural networks into ground rainfall estimation
using the horizontal radar reflectivity of 1km aloft.
One disadvantage of the BP neural network is the slow
training speed. To overcome this problem, Liu et al
(2001) developed the adaptive Radial-Basis-Function
(RBF) neural network. This algorithm can also be in-
corporated with adaptivity such that the neural network
can respond to variation in the relationship between
the radar reflectivity and the ground rainfall rate. This
type of RBF neural network has also been successfully
applied to ground rainfall estimation using vertical pro-
file of the radar reflectivity (Xu et al, 2001 and Li et
al, 2002). Li et al. (2003) recently demonstrated that
equispaced vertical radar reflectivity from 1km to 4km
height above the gage (see Figure 2) is the best input
vector to RBF neural network for radar rainfall estima-
tion, compared to several other choices,

The training process for adaptive RBF neural net-
works involves two steps: building the initial RBF
model and adaptively updating RBF models (Liu et al,
2001). It is a nontrivial task to determine the parame-
ters of the initial neural network such as the number of
centers in RBF neural networks and the widths of RBF
centers (Liu et al, 2001). To address this problem Orr
(1998) proposed a method to optimize the width of
RBF centers by explicit search. Two principles are im-
portant during training neural networks: the first one
is to avoid overfitting to training data and the second
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one is to tune the neural network for optimal perfor-
mance. It will be desirable to develop an automatic
scheme to build the initial network and adaptively up-
date the models to eliminate the manual tuning ef-
fort. This paper describes an alternate RBF algorithm
(Blevins et al, 1993) to automatically build the ini-
tial RBF model. Subsequently this model is adaptively
updated for radar rainfall estimation. RBF internal pa-
rameters, including centers and widths of the RBF as
well as the number of centers, can be autonomously
determined during the training phase. This aspect is
the main distinction compared to the algorithm of Liu
et al (2001). This algorithm also includes an embedded
mechanism to avoid the overfitting during the training
process.

We have applied this algorithm to the ground rainfall
estimation from the WSR-88D radar data in 1998. We
adaptively train and apply RBF models to estimating
the daily and hourly rainfall accumulations from verti-
cal profiles of reflectivity (Lkm to 4km) and compare
them with ground gage data. Application to one year
of WSR-88D radar data over Melbourne, FL shows that
this new radar rainfall neural network can estimate av-
erage daily accumulation to a normalized standard error
of 25% with negligible bias. Results are also compared
with WSR-88D Z-R and the best Z-R algorithm that
can be determined after the fact.

The following sections of this paper are organized as
follows: Section 2 briefly reviews the RBF algorithms
proposed by Blevins et al (1993) and describes how
we apply these algorithms into the adaptive scheme
for radar rainfall estimation. Section 3 presents the
application of the new RBF algorithms to observational
data from WSR-88D radar during 1998 and the results
of performance evaluation. Section 4 demonstrates the
tuning procedure to optimize RBF networks. Section
5 summarizes conclusion of this study.

2. ALGORITHM AND METHODOLOGY

Blevins et al (1993) proposed a training algorithm
for automatically determining the number, the loca-



tion and the widths of RBF centers with an embedded
mechanism to avoide overfitting. During the training
process, the neural network can grow by appropriately
adding the new neuron at the location in the input do-
main where the estimation error is the largest. On the
other hand, overfitting may be prevented by building
networks that are limited to the level of uncertainty in
the system being modeled.

This training algorithm involves two steps, one for
initializing and the other for updating the neural net-
work, described as follows:

Step 1. Initialization of network: We first select
n initial centers by clustering input samples using k-
means. Then we set initial widths of RBF centers by
the maximum Euclidean distance over all input vectors
in each cluster. n unknown weights are subsequently
determined by solving the linear system with n samples.

Step 2. Adjustment of network parameters and ad-
dition of new neurons: We first compute the output
of the network and examine if the total squared er-
ror meets the given threshold. If the threshold is not
met, the parameters are adjusted using the gradient-
based methods and all the RBF parameters are updated
accordingly. The RBF centers can be automatically
determined by periodically examining the rate of con-
vergence. The rate of convergence is defined as the
normalized difference between total squared errors of
the last and first epochs normalized by the training
period. When the rate of convergence is below the
threshold a new RBF node could be added at the loca-
tion in the input domain where the estimation error is
the largest. The overfitting is reduced by the addition
of a new node contingent on a statistical test providing
allowance for the error due to system uncertainty. The
training is complete when the rate of convergence is
small enough and no new node need be added. The
other criterion to decide the network convergence is
the conventional threshold of the total squared error,
as described above.

The block diagram for adaptive radar rainfall neural
network (RRN) is shown in Figure 1. After we have
established the initial RBF model, which includes RBF
centers, widths and weights, we can switch the neu-
ral network between two modes: application mode for
radar rainfall estimation and the updating mode when
new data sets are available. In the updating mode, the
RBF network can be incrementally trained from the
existing model using the new data sets.

The new RBF algorithm with the adaptive scheme
for radar rainfall estimation is applied as follows: first
both step 1 and step 2 are applied on data from the first
day to obtain an initial RBF network. Subsequently
step 2 is applied to new data to progressively train and
update the network on a daily basis. The input to
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Figure 1: Adaptive neural network scheme. After the
initial neural network is established, it can be switched
between two modes: application mode and updating
mode. When the new radar and gage data are avail-
able, the network can be adaptively updated.
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Figure 2: Vertical profile of radar reflectivity above
gage as the input vector to RBF neural networks.

the neural network is the vertical reflectivity profile at
the height from 1km to 4km above the gage and with
the 1km resolution (Figure 2). During the application
phase, we have each day’s vertical reflectivity profiles
as the input to the RBF network, which is configured
using the model (RBF centers, widths and weights)
adaptively trained up to the previous day. The output
of the network is the rainfall rate estimation and will
be used to compute average hourly and daily rainfall
accumulations over the gages. The estimated rainfall
accumulations are compared with gage observations
to evaluate the RRN performance. The statistics of
comparison (bias, correlation coefficient and normal-
ized standard error) are evaluated to quantify the RRN
performance.

3. Data Analysis

3.1 Radar And Rain Gage Data



The data sets are collected by WSR-88D radar lo-
cated at Melbourne, Florida and the gage networks in
the vicinity of the radar, which are part of the Tropi-
cal Rainfall Measuring Mission (TRMM) ground vali-
dation program. The gages are from Kennedy Space
Center (KSC), South Florida Water Management Dis-
trict (SFL) and St. Johns Water Management District
(STJ). Totally 109 gages within the range of 125km
from the radar are used in this study. The sampling
resolution of gage data is one minute. Since the WSR-
88D radar takes approximately five minutes to finish a
volume scan, five-minute integration is performed on
rain gage samples to obtain the average rainfall rate
during each radar volume scan. The five-minute aver-
age rainfall rate is used as the target output to RBF
neural network. The RBF neural network is adaptively
trained and tested, as described in the previous section,
using the data sets collected during the twelve months
of 1998. The daily or hourly rainfall accumulations are
averaged over all the testing gages that observe rain-
fall.

3.2 Results

The average daily and hourly rainfall accumulations
from RRN are compared with gage observations. The
performance is quantitatively evaluated by computing
statistics such as bias, correlation coefficient (CORR)
and normalized standard error (NSE). The results of
the adaptive RBF algorithm described in this paper-
are also compared with best Z-R fitting. Compari-
son against WSR-88D standard Z-R algorithm (R =
0.017% Z%™4 mm /hour) was also done for completion.
The best Z-R relationship, R = a * Z°, is obtained by
the nonlinear fitting of the data collected by the ran-
domly selected half of the gage sites. All estimation
and tests are conducted over the rest of the gage sites.
For the best Z-R fitting, the fitting data and the testing
data are from the same day. Table 1 shows the average
hourly and daily rainfall accumulations by three algo-
rithms. From Table 1 it can be seen that the new RBF
algorithm can estimate average daily accumulation to a
normalized standard error of 25% with negligible bias.
The adaptive RBF algorithm can perform as well as the
best Z-R that can be determined after the fact.

4. OPTIMIZATION OF RBF NETWORK PERFOR-
MANCE

As discussed above, the neural network need be
tuned for optimal performance while avoiding overfit-
ting. Optimizing the network performance is a tedious
and nontrivial process. We desire to design the algo-
rithm such that, the free parameters that can be altered

Table 1: Average rainfall estimation comparisons be-
tween three algorithms. Data are from WSR-88D radar
during a one-year period (January 9, 1998 - December
31, 1998). CORR is the correlation coefficient, NSE is
the normalized standard error.

Average daily rainfall accumulation
algorithm bias (%) | CORR | NSE
WSR-88D Z-R 28 0.87 | 0.34
best Z-R fitting -5.0 0.87 | 0.22
adaptive RBF 2.1 0.83 | 0.25

Average hourly rainfall accumulation
algorithm bias (%) | CORR | NSE
WSR-88D Z-R 32 0.87 | 0.42
best Z-R fitting 0.1 0.82 | 0.35
adaptive RBF 2.7 0.83 | 0.38

are kept very few.

In the new RBF algorithm described here, there are
mainly two free parameters that are used for the RBF
network learning, namely, the learning rate and the
period. The period refers to the number of training
epochs in which the rate of convergence needs to be
calculated and examined, which leads to the decision,
if a new RBF node need be added. Learning rate is the
conventional updating rate for any gradient-based neu-
ral network learning algorithm (Haykin, 1999). Gener-
ally the learning rate has to be adjusted for optimiz-
ing the network’s performance to a specific application.
Small learning rate results in slow training, while large
learning rate results in over-adjustment and unstable
learning. When we decrease the learning rate to ensure
the smooth learning, we should accordingly increase the
period to ensure enough learning cycles for a fair ex-
amination on the rate of convergence. The optimizing
procedure for the RBF network is conducted by start-
ing with a relatively large value of learning rate and a
small period. Then we stepwise decrease the value of
learning rate and increase the period. The adjustment
of these two parameters reflects the trade-off between
the two learning scenarios of finer and faster learning.
In the current study we have used the the data during
the first half year of 1998 to optimize the RRN and the
results are presented in Figure 3.

Starting with a learning rate of 10~2 and the value
of 10 epochs for period, we gradually decrease the value
of learning rate to 10~ and accordingly increase the
value of period to 60 epochs. For learning rate less
than 10~*, the performance of the network does not
show significant enhancement. The values used in the
analysis presented in the previous section are learning
rate of 10~* and a period of 30 epochs.
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Figure 3: Performance (CORR and NSE) versus tun-
ing parameters (learning rate and period) for optimiz-
ing RBF neural network. The biases are all negligible
(less than 5%). Data are from WSR-88D radar during
a half-year period (January 9, 1998 - June 30, 1998).
CORR is the correlation coefficient, NSE is the normal-
ized standard error.

5. SUMMARY

This paper describes an algorithm to automatically
build the initial RBF model as well as adaptively update
the models for radar rainfall estimation. This model
differs from that of Liu et al (2001) that both centers
and widths of RBFs are adaptively updated. The input
to the network is the equispaced vertical radar reflectiv-
ity from 1km to 4km height above the gage, while the
output is radar rainfall rate averaged over five minutes.
This algorithm also includes an embedded mechanism
to avoid the overfitting during the training. We have
applied this algorithm to the ground rainfall estimation
from the WSR-88D radar located at Melbourne, FL
for a whole year of the 1998. We adaptively train and
apply the RBF models to estimate the average daily
and hourly rainfall accumulations over the gage loca-
tion. Application to one year of WSR-88D radar data
over Melbourne, FL shows that this radar rainfall neu-
ral network can estimate average daily accumulation
to a normalized standard error of 25% with negligible
bias and performs as well as the best Z-R that can be
determined after each rainfall event.
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