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1. INTRODUCTION 
 

With a dynamic relationship between 
rainfall in southern Africa and Sea Surface 
Temperature (SST) in the surrounding oceans in 
recent years (Landman and Mason, 1999) and a 
consistent pattern of declining runoff after 1970 
(Fanta et al, 2002), one of the major challenges 
for meteorologists and hydrologists has been to 
understand and to predict the nature of this 
variability over different spatial and temporal 
scales. Recent research (e.g., Reason and 
Mulenga, 1999) has made progress in providing 
evidence of relationships between rainfall 
variability and a number of atmospheric and 
oceanic variables for southern Africa. From the  
developments in long range forecast models 
utilizing SST and other predictors one would 
have hoped that with these developments 
countries within the southern African region are 
better equipped to manage climate variability 
rather than always being surprised victims of 
unexpected extreme events, such as droughts 
(e.g., Landman et al., 2001). Unfortunately, the 
ability to predict rainfall has not progressed much 
in the last 20 years and in recent years has even 
deteriorated (Mason, 1997).  The drop in 
statistical and dynamical seasonal forecasting 
skill since 1980 has also been reported for the 
Indian Monsoon and in the 1990’s for the North 
Atlantic storm frequencies (Mason, 1997). 
Decreased predictability has been associated 
with non-stationarity of the ocean-atmosphere 
system (Webster et al., 2002), strong non-
linearities demonstrated by important climate 
processes (Landman et al., 2001) and general 
problems associated with model inadequacies 
(Allan et al., 1995). To avoid ambiguous forecast 
signals (Jury and Engert, 1999) or compromised 
skill in general (Shen et al., 2001), new methods 
of analysis, non-linear prediction models and 
identification of robust predictor fields are 
emphasized (Shen et al., 2001, Mason, 1997).  
  

This study presents results on the use of 
wavelet analysis and wavelet-based empirical 
orthogonal analysis to:  
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(1) Identify and analyze the spatial, 
temporal and frequency variability, and the 
dominant oscillations in the rainfall fields of 
central southern Africa (CSA) and SST fields in 
the South Atlantic Ocean and the Indian Ocean.  
(2) Explore teleconnection patterns 
between SST fields from the Indian and south 
Atlantic Oceans and rainfall in CSA to identify 
regions of predictor fields from the oceans 
relevant to statistical prediction of CSA rainfall 
and,  
 (3) The predictor fields identified from (1) 
and (2) are used to drive both a linear model, 
Canonical Correlation Analysis (CCA) and a non-
linear model artificial neural network calibrated by 
a genetic algorithm (ANN-GA) to predict rainfall 
at seasonal time scales (3-month lead time) for 
CSA during the period 1986-1995.  
 

A wavelet transformation is used in this 
study because they have been successfully 
applied to climate characteristics analysis, such 
as streamflow characterization (Smith et al., 
1998) and interannual temperature events and 
shifts in global temperature (Park and Mann, 
2000). Results from these and other studies have 
shown that wavelets are capable of locating 
irregularly distributed, multi-scale features in 
space and/or time (Smith et al., 1998) of climate 
elements and are thus suitable for the analysis of 
SST and rainfall.  
 
2. DATA AND METHODS. 
 

Monthly rainfall data (1950-1995) from 
21 grid locations at a resolution of 2.5°×3.75° 
latitude and longitude was extracted for CSA 
(6ºS-18ºS, 12ºE-37ºE), see Fig 1.  The rainfall 
data was provided by the UK meteorological 
office.  

The monthly rainfall data was 
transformed into seasonal data by summing the 
monthly values for each grid location. Monthly 
SST anomaly grid data (1950-1995) at 5o x 5o 
latitude and longitude resolution was extracted 
from the Indian (20ºN-40ºS, 40ºE-105ºE) and 
Atlantic (10ºN-30ºS, 50ºW-10ºE) Ocean, known 
to influence CSA rainfall. This data was 
transformed into seasonal and annual data by 
computing 3-month averages for JFM, AMJ, JAS 
and SON and annual averages, respectively. The 
SST dataset is part of MOHSST6 and was 
provided by the UK meteorological office.  
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Fig. 1. (a) Major ocean currents of Atlantic and 
Indian oceans and (b) detailed location and 
description of CSA (Zambia, Malawi and Angola) 
 
 
2.2 Wavelet Analysis 
 

 A brief outline of wavelet transformation 
is given here. More detailed information is given 
by Terrence and Compo (1998). Wavelets are a 
set of limited duration waves, also called 
daughter wavelets, because they are formed by 
dilations and translations of a single prototype 
wavelet function ψ(t), where t is real valued, 
called the basic or mother wavelet (Castleman, 
1996). The mother wavelet designed to oscillate 
like a wave, is required to span an area that 
sums to zero, and die out rapidly to zero as t 
tends to infinity to satisfy the so called 
“admissibility” condition. 
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A set of wavelets can be generated by translating 
and scaling the basic wavelet as follows   
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where the scale (width) of the wavelet and 
translated position along the t-axis are a and b 
respectively.  By continuously varying a long b, a 
picture is constructed depicting how the energy 
over various frequencies varies with time. The 
parameters a and b are real and a, always 
positive, may take continuous or a discrete 

values. The quantity  in Equation (2) is an 
energy normalization term, which ensures that 
energy of the mother, and daughter wavelets 
remain the same over all scales and making it 
possible to directly compare wavelet transforms 

of one time series with another (Torrence and 
Compo, 1998).   
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The wavelet transform of a real signal X 

(t) with respect to the mother wavelet is a 
convolution integral given as   
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where ψ* is the complex conjugate of ψ. In this 
equation, ( )abW ,  is a wavelet spectrum, a 
matrix of energy coefficients of the decomposed 
time series X (t). A faster and much more efficient 
way to compute the wavelet transform is done in 
the Fourier space using the Fourier transform of 
a discrete time series, X (t), as 
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where the caret symbolizes Fourier Transform, k 
is the frequency index (0,…T) and Ψ (sωk) is the 
Fourier transform of the wavelet function. The 
wavelet spectrum was computed using a discrete 
set of 20 scales starting at 2 years in fractional 
power of two using  
 

jj
oj ss δ2=     (5) 

 
where s0 is twice the sampling rate (i.e. 2 years), j 
=0,1,….20, and δj = 0.25, thus giving 
scales(periods) ranging from 2 to 64 years, that 
cover the length of both data periods. The 
wavelet transform of a time series contains a 
wealth of information, which needs to be 
condensed over a range of scales or time to be 
useful for multivariate analysis.  Two ways 
suggested by Torrence and Compo (1998) are  
(1) Time integrated variance of energy 
coefficients at every scale to construct global 
wavelet power   
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and (2) Scale (band limited) integrated variance 
of energy coefficients over time to construct the 
scale averaged wavelet power (SAWP) 
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where Cδ is the reconstruction factor that takes 
on values depending on the mother wavelet 
used, δj is a factor for scale averaging and δt is 



the sampling period. The global wavelet 
spectrum shows dominant oscillations present in 
a time series. The local wavelet power shows 
how the dominant oscillations vary with time. To 
examine whether two remotely located 
multivariate time series are related to each other 
or if one modulates the other over a number of 
scales, the SAWP can be constructed by varying 
the scale, a, and computing the weighted sum of 
the wavelet power over those scales. Using the 
results of global spectra computed for some 
selected SST fields located in the Indian and 
Atlantic Oceans and rainfall fields located in CSA, 
we extracted energy in the 2-8 year range 
containing El Nino Southern Oscillation (ENSO), 
known to influence rainfall variability in CSA 
(Mason and Tyson, 2000). To compute the 
wavelet power for this study, the Morlet wavelet 
(k = 6), was used because its structure 
resembles that of a rainfall time series.  
 
 Ψ (t) = π-1/4ei6te-t2/2     (8) 
 
2.3 Wavelet Empirical Orthogonal Function 

Analysis.  
 

Empirical Orthogonal Functions analysis 
(EOF) has been widely used (e.g. Kutzbach, 
1967) for analyzing spatial and temporal 
variability of physical fields to objectively identify 
the spatially uncorrelated modes of variability of a 
given field. In this study EOF is used on SAWP 
and hence called wavelet empirical orthogonal 
function (WEOF) and its corresponding principal 
components as wavelet principal components 
(WLPCs). Since the WLPCs are obtained from 
SAWP, they are interpreted as ‘frequency 
compacted’ energy variability (Park and Mann, 
2000). The number of WEOF retained for 
analysis is found using the scree diagram. To 
identify and delineate temporally and spatially 
uncorrelated patterns at regional scale, we 
applied the WEOF analysis on SAWP of the SST 
of the South Atlantic and Indian Ocean and 
rainfall time series of CSA. Techniques such as 
cluster analysis and among many others can be 
used to meet this objective. However, the skill of 
the above methods is often difficult to evaluate 
statistically (Basalirwa, 1995).  
 
2.4 Models for Predicting Rainfall. 
 
2.4.1 Artificial Neural Network Calibrated by 

Genetic Algorithm (ANN-GA) 
 

The Genetic algorithm calibrated neural 
network used in this study consists of a 
population of feed forward neural networks 
embedded in a Genetic algorithm routine, Fig 2.  
The ANN parameters are iteratively improved via 
genetic evolution (selection, crossover and 
mutation) to more accurately model the joint 

SST-rainfall variability. The objective function 
used is a combination of the Pearson correlation 
and the root mean square error (RMSE). For 
each neural network of the population, the 
predictand, y, is obtained as a nonlinear 
translation of the weighted average of the PCs of 
raw data, x  
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and w1 and w2 are weights for each solution to 
the hidden and the output layers respectively, 
and b1 and b2 are the bias vectors associated 
with the hidden and output layers. The transfer 
function, f1, maps the PCs to the hidden layer, 
containing two or more neurons, whose number 
is dictated by the complexity of the problem.  The 
biases, b1 and b2 are added to stabilize the 
solutions. Next the hidden layer is mapped to the 
third (output) layer containing a single neuron, 
through another transfer function f2. The non-
linear mapping function, f1, used here is the 
hyperbolic tangent function, also called  the 
squashing function (Haykin, 1994), used to 
squash or limit the output of a neuron to 
permissible amplitude.  

The neural networks are trained and the 
best weights are retained for predicting the CSA 
rainfall using input data independent of the 
training.  

 

 
Fig 2. The ANN-GA flowchart. 



 

 

 
 
2.4.2 Canonical Correlation Analysis  

(CCA) Principal Component Analysis 
(PCA). 

 
CCA is an established statistical 

forecasting scheme. Readers interested in details 
of CCA can refer to Barnett and Preisendorfer 
1987 and Glahn (1968). The size of raw input 
data from the Indian and South Atlantic Ocean 
that was identified through WEOF was reduced 
to a few dominant EOF or PCA modes as input to 
CCA.  In applying CCA model, 37 years of data 
was used to calibrate at each iteration. For 
example 1950-1986 AMJ data was used to 
predict the 1986/87 ONDJFM rainfall, 1951-1987 
for predicting the 1987/88 rainfall, etc. 

 
 (2) Indian Ocean 

 

 
3. RESULTS 
 
3.1 Variability of the rainfall in CSA and SST 

in the Indian and South Atlantic Ocean. 
 
Independently, the first three WLPCs of SST in 
both oceans and CSA were retained for analysis 
(Fig 3). These explained 66.9%, 63.8% and 
68.5% of the total energy variance for the 
Atlantic, the Indian Oceans and CSA 
respectively. The major ocean currents with 
climatological importance to CSA rainfall 
variability were the Benguela, Guinea and the 
Brazil in the South Atlantic and the Agulhas and 
south equatorial in the Indian Ocean. The 
northern half of Indian ocean was also observed 
as an important source of rainfall variability of 
CSA. Increasing power of wavelet energy of the 
Benguela current and northern half of Indian 
ocean coupled with a decrease in power of the 
Agulhas and south equatorial ocean currents 
were found to result in decrease (increase) of 
rainfall in eastern (western) CSA.  The long-term 
wavelet power increases and decreases of the 
oceans and corresponding decrease (increases) 
in eastern (western) CSA rainfall was found to 
have begun about 1970 and went on till 1995. 

 
   (3) CSA  

 

 

 
(1) South Atlantic Ocean 

 

 
Fig 3. The first two WLPCs: (1)(a) and (b) South 
Atlantic Ocean (2) (a) and (b) Indian Ocean and 
(3) (a) and (b) for CSA. Dotted (cross-hatched) 
areas are positively (negatively) correlated to the 
WLPCs 
 
 



3.2 Predictability of CSA Rainfall 

 

 
Validation runs for both the calibrated 

models of ANN-GA and CCA were based on four 
PCs with a total variance of 72.6% (e.g., 38.6%, 
15.3%, 10.5% and 8.2%) as input from the South 
Atlantic Ocean and five PCs explaining a total 
variance of 73.1% (e.g., 34.9%, 17.5%, 9.6%, 
7.2% and 3.9%, respectively) from the Indian 
Ocean. Figure 4 presents the results. Excellent 
predictions were found for ANN-GA. The CCA 
had comparatively low prediction skill.  
   
 
4. OBSERVATIONS AND CONCLUSIONS 

 
We used wavelets and wavelet 

empirical orthogonal function analysis of scale 
averaged wavelet power to (1) identify and 
analyze the spatial, temporal and frequency 
variability and dominant oscillations in the CSA 
rainfall and SST of the South Atlantic Ocean and 
Indian Ocean, (2) Explore teleconnection 
patterns between SST fields from the Indian and 
south Atlantic Oceans and rainfall in CSA to 
identify relevant predictor fields to statistical 
prediction models and (3) used linear and non-
linear statistical teleconnection models, CCA and 
ANN-GA for predicting seasonal rainfall at 3 
months lead-time.  

       

 

Results show that long term warming 
(cooling) of the Northern Indian Ocean and 
Benguela current coupled with cooling (warming) 
of the south Indian Ocean, the Guinea and Brazil 
ocean currents resulted in prolonged below 
(above) normal rainfall in eastern (western) CSA. 

  Using the identified predictor fields of 
both the oceans to predict rainfall in CSA, lead to 
higher prediction skills in both the linear and non-
linear statistical teleconnection models, CCA and 
ANN-GA. However, ANN-GA achieved higher 
prediction skill that CCA.  

Finally, the prediction skills of most 
statistical teleconnection models are affected by 
the non-stationary and non-linear characteristics 
of climate data. We consider the data non-
stationariy by identifying regions of predictor 
fields (SST of Indian and south Atlantic Ocean ) 
correlated to the predictand(CSA rainfall) via 
wavelet analysis and demonstrated that ANN-GA  
a nonlinear model achieved higher prediction skill 
that it linear counterpart , the CCA.  

 
Fig. 4. The prediction skill of Models, (a) and (b) 
are for ANN-GA and (c) and (d) are for CCA 
using AMJ SST from the south Atlantic over the 
period 1986-1995.  

 
 
 
 
 
 
 
 
 



References: 
 
Allan RJ, Lindesay JA, Reason CJC. 1995. Multi-
decadal variability in the climate system over the 
Indian Ocean region during the austral summer.  
Journal of Climate 8: 1853-1873 
 
Basalirwa CPK. 1995. Delineation of Uganda into 
climatological rainfall zones using the method of 
principal component analysis. International 
Journal of Climatology 15: 1161-1177. 
 
Castleman KR. 1996. Digital Image Processing. 
Prentice hall, Englewood cliffs, New Jersey.   
 
Fanta B, Zaake BT, Kachroo RK. 2002. A study 
of the variability of the river  flow of the southern 
Africa region. Hydrological Sciences. 46(4):  513-
524. 
 
Glahn HR. 1968.Canonical correlation and its 
relationship to discriminant analysis and multiple 
regression. Journal of atmospheric sciences 25:  
23-31 
 
Haykin S. 1994. Neural Networks: A  
Comprehensive Foundation, Macmillan/IEEE  
Press.  
 
Huang NE, Shen Z., Zheng Q., Yen N., Tung, 
C.C., and Liu, H.H., 1998. The empirical mode 
decomposition and the Hilbert spectrum for 
nonlinear and non-stationary time series analysis. 
Proceedings of the Royal Society of London.  
454:  903-995. 
 
Jury MR, Engert S. 1999. Teleconnections 
modulating inter-annual climate variability over 
northern Namibia. International Journal of 
Climatology 19, 1459-1475. 
 
Kutzbach JE. 1967: Empirical eigenvectors of 
sea-level pressure, surface temperature  
and precipitation complexes over North America. 
Journal of applied meteorology 6: 791-802. 
 
Landman W A, Mason SJ. 1999. Change in the 
association between Indian Ocean sea-surface 
temperatures and summer rainfall over South 
Africa and Namibia. International Journal of 
Climatology 19: 1477-1492 
 
Landman WE, Mason SJ, Tyson PD, Tennant  
WJ. 2001. Retroactive skill of multi-tiered 
forecasts of summer rainfall over southern Africa. 
International Journal of Climatology 21: 1-19 
 
 
Mason SJ. 1997. Review of recent developments 
in seasonal forecasting of rainfall.  Water SA 23: 
57-61 
 

Mason SJ, Tyson PD. 2000. The occurrence and 
predictability of droughts over Southern Africa.  In 
drought volume 1: A global assessment Wilhite 
DA(ed). Routledge: New York  
 
Mutai CC, Ward MN, Colman A, 1998. Towards 
the prediction of the East Africa short rains based 
on sea surface temperature-atmosphere 
coupling.  International Journal of Climatology 18: 
975-997 
 
Park J, Mann ME. 2000. Inter-annual 
temperature events and shifts in global  
temperature: A “multiwavelet” correlation 
approach.  Earth Interactions. 4. 1-53 
 
Reason CJC Mulenga H.1999. Relationships 
between South African rainfall and  
SST anomalies in the southwest Indian Ocean. 
International Journal of Climatology 19: 1651-
1673. 
 
Shen SPS, Lau WKM, Kim KY, Li G. 2001. A 
canonical ensemble correlation prediction model 
for seasonal precipitation anomaly, Technical 
memorandum NASA/TM-2001-209989.  
Greenbelt, Maryland 20771.  Pp53. 
 
Smith LC, Turcotte DL, Isacks BL. 1998. 
Streamflow characterization and feature 
detection using a discrete wavelet transform. 
Hydrological Processes 12: 233-249. 
 
Terrence C, Compo GP. 1998 A practical guide 
to wavelets analysis. Bulletin of  the American 
Meteorological Society (79) 1: 61-78 
 
Webster PJ, Clark C, Cherikova G, Fasullo J, 
Han W, Loschnigg and Sahami K. (2002). The 
monsoon as a self-regulating coupled ocean-
atmosphere system. In Meteorology at the 
Millennium (Edited by Pearce). The Royal 
Meteorological Society  83: 198-219. 
 
Williams J. 2000. Drought Risk in Southern 
Africa, In drought volume 1: A global  
assessment Wilhite DA(ed). Routledge: New 
York  
 
 
 
 
 
 
 
 
 
 


