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1 INTRODUCTION

Several approaches towards normalizing rain-
drop size distributions (DSDs) have been proposed
in the scientific literature. The aim of normaliz-
ing (or “scaling”) DSDs is to collapse many indi-
vidual and highly variable empirical distributions
into (ideally) one single “general” (or “intrinsic”)
distribution, which is typical for a particular type
of rain or climatic setting (Sempere Torres et al.,
1994, 1998; Lee et al., 2003). This provides a sta-
tistically more robust manner to adjust analyti-
cal parameterizations to DSDs than the traditional
approach where a particular parametric form is fit-
ted to each empirical distribution separately (e.g.
Marshall and Palmer, 1948). An additional advan-
tage of normalizing DSDs is that it becomes eas-
ier to establish connections between the shape of
DSDs and the physical processes producing them
(Uijlenhoet et al., 2003a,b). This will ultimately
lead to improved rainfall retrieval algorithms for
ground-based and space-borne microwave remote
sensors (both active and passive). We present
a non-parametric adjustment method to estimate
radar reflectivity – rain rate relationships and nor-
malized DSDs (and their associated uncertainties)
based on Gaussian mixtures (e.g. McLachlan and
Peel, 2000; Wand and Jones, 1995, present kernel
smoothing approach).

2 MATERIAL AND METHODS

Sempere Torres et al. (1994, 1998) propose a
unified framework for parameterizing DSDs, of
which many previous parameterizations are spe-
cial cases. Their formulation takes the form of a
scaling law, in which the DSD depends both on
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the raindrop diameter (D) and on the value of
a reference variable, commonly taken to be the
rain rate (R). In this general formulation it is no
longer necessary to impose an a priori functional
form for the DSD. This form follows directly from
the data. In addition, the scaling law formalism
naturally leads to the ubiquitous power law rela-
tionships between rainfall integral variables (such
as the radar reflectivity factor Z and the rain rate
R). According to the scaling law formalism, DSDs
can be parameterized in terms of 1) an intrinsic
DSD, the so-called general DSD g(x), where x is a
scaled version of D, and 2) the scaling exponents
α and β. It can be demonstrated that the val-
ues of α and β and the form and dimensions of
g(x) depend on the choice of the reference vari-
able (typically R), but do not bear any functional
dependence on its value. An unsolved problem in
the area of DSD normalization is that of objec-
tively choosing an appropriate functional form for
the scaled distribution g(x). Owing to the gen-
erality of the normalization approach, imposing
one of the classical functional forms for probability
densities (such as exponential, gamma, lognormal,
etc.) is unnecessarily restrictive. In this paper we
investigate the potential of a non-parametric es-
timation method based on Gaussian mixtures to
infer normalized DSDs and related Z–R relations.
We apply the methodology to a climatologically
representative sample of 534 DSDs collected us-
ing the filter paper method by Herman Wessels
(who kindly provided the data to us) at the Royal
Netherlands Meteorological Institute (KNMI).

3 RESULTS AND DISCUSSION

Figure 1 shows the bivariate Gaussian mixture
adjusted to a scatterplot of the Z–R pairs cor-
responding to the 534 DSDs. The corresponding
regression of Z given R and the associated uncer-
tainties are projected on the z=0-plane. The fact



that the regression line is closely linear in log-log
space provides an independent check of the power-
law behavior of the climatological Z–R relation for
Dutch conditions. We note that inference in lin-
ear instead of in logarithmic space provides nearly
the same regression line (not shown here). Fig-
ure 2 shows the corresponding results for the 534
g(x)’s normalized using R as the reference vari-
able according to the method proposed by Sem-
pere Torres et al. (1994, 1998). The inferred form
of the regression line cannot be represented by any
of the classical DSD parameterizations, although
the generalized gamma function may provide sat-
isfactory results in this particular case. According
to the scaling law formalism, the coefficient of a Z–
R relation should correspond to the 6th moment
of the associated g(x). How we can implement
this constraint in the Gaussian mixture technique
is still under investigation.

4 CONCLUSIONS

We have demonstrated the potential of a non-
parametric estimation method based on Gaussian
mixtures to infer normalized DSDs and related Z–
R relations. The same non-parametric estimation
method can be employed to infer scaled DSDs ob-
tained using the double-moment normalization ap-
proach that we recently proposed as an extension
to the single-moment normalization presented here
(Lee et al., 2003).
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Figure 1: Bivariate Gaussian mixture (z-axis) ad-
justed to 534 Z (y-axis, dBZ) – R (x-axis, logarith-
mic scale) pairs. Projected on z=0: Conditional
mean (regression) and ±1σ error bounds.
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Figure 2: Gaussian mixture (z-axis) adjusted to
534 scaled DSDs (x-axis: scaled size x, linear scale;
y-axis: scaled number density g(x), logarithmic
scale), including regression and ±1σ error bounds.
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