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1. INTRODUCTION

In conventional radar systems the receiver band-
width is designed to be similar to be bandwidth
of the transmit pulse. For a given range sample
estimates are averaged over time to improve the
estimation accuracy. A number of methods have
been proposed in the past for improving the qual-
ity of estimates without sacrificing range resolution
(Mudukutore et al, 1998). Schemes using shorter
pulsewidth or pulse compression techniques re-
quire opening up the system bandwidth. Recently
Torres and Zrnic (2001) have suggested oversam-
pling the radar signals in range and whitening the
range samples as a potential way to decrease the
measured standard deviation of various radar signal
parameters. This process requires increasing only
the receiver bandwidth. For the whitening of the re-
ceived waveform to be accurate, numerous details
have to be addressed such as full knowledge of am-
plitude and phase of the transmitted pulse. This pa-
per presents a theoretical and experimental inves-
tigation of the procedure of oversampling in range
(at a resolution smaller than normal pulse width).
It is shown that use of oversampling and whitening
improves the quality of reflectivity and velocity esti-
mates nearly in agreement with the theory, however
improvement is not so obvious for the polarimetric
variables.

2. THEORETICAL BACKGROUND

As shown in Bringi and Chandrasekar 2001, the
correlation among the range samples v(t) at the in-

put of the receiver is given as,

Rv(t, t + ∆t) = P̄rRu(∆t) (1)

Where u(t) is the transmitted pulse waveform,
and P̄r is the mean power of the range samples. In
the case of oversampling where multiple samples
are taken within the pulse duration, the range sam-
ples will be correlated. Applying an orthogonaliz-
ing transformation on the oversampled signals that
would yield a set of uncorrelated samples in range,
the reflectivity estimates obtained from these trans-
formed samples could be averaged to reduce their
standard deviation. Consider the samples of the
received signal from a pulse of transmitted width
T0/L. Where T0 and L are normal pulsewidth and
oversampling factor respectively. Then the received
signal sample at time t corresponds to a resolution
volume whose range extent is CT0/2L and located
at Ct/2 from the radar. Each sample from this sub
volume is a complex gaussian random variable with
zero mean (Bringi and Chandrasekar, 2001).

For a longer pulse of length T0, each sub-
pulse/chip of length T0/L defines a range inter-
val CT0/2L. A combination of echoes from these
intervals weighted by the pulse shape produces
the samples at the receiver. With the assump-
tion that the mean properties of the signal returns
corresponding to each of the L sub volumes are
the same, the orthogonalizing transformation trans-
forms these to the original independent samples
and obtain variance reduction through averaging
over L ranges.



Figure 1 . Illustration of oversampling process for L
= 3

3. ORTHOGONAL TRANSFORMATION

The orthogonal transformation matrix is obtained
through diagonalizing the covariance matrix of the
range samples. Let Cv is the covariance matrix of
the range samples. For a rectangular pulse, the el-
ements of the covariance matrix are known. But in
reality, as shown in Fig.2, the transmitted pulse is
not a perfect rectangle. However, Cv can be esti-
mated from the pulse samples.

Figure 2 . Shape of the CHILL transmitted pulse

An Eigen value decomposition (EVD) operation

is performed on Cv to obtain the transformation ma-
trix,

Cv = V ΛV ∗T (2)

Where V is a matrix whose columns are the eigen-
vectors of Cv and Λ is a diagonal matrix whose di-
agonal elements {λi} are the eigenvalues of the co-
variance matrix. The corresponding transformation
matrix W is obtained as

W = DV ∗T (3)

Where D is a diagonal matrix with elements
{

λ
−1/2
i

}
4. IMPACT OF NOISE

The received signal consists of signal as well as
noise. The noise was uncorrelated before transfor-
mation. In the process of diagonalizing the signal
covariance matrix, the noise becomes correlated
(or colored). Now the noise power after transfor-
mation can be expressed as,

Nw = N
tr

{
C−1

v

}
L

(4)

For uniform precipitation in range the noise is
enhanced by a factor L2/(L + 1) (Torres and Zr-
nic, 2001), which limits the applicability of this
technique under low signal-to-noise ratio situations.
Therefore, after whitening the signal-to-noise ratio
is updated for evaluating the quality of various pa-
rameters such as signal power (P ), differential re-
flectivity (Zdr) and copolar coefficient (ρco). Let
Vh[n], Vv[n], n = 1, . . . ,M are the samples of re-
ceived signal in horizontal and vertical receiver re-
spectively. For operation in hybrid mode, the fol-
lowing equations are used to estimate the above-
mentioned parameters,

P̂h =
1

LM

∑M−1
j=0

∑L−1
k=0 |Vh(j, k)|2

(1 + 1/SNR)
(5)

Ẑdr = 10log10
P̂h

P̂v

(6)

ρ̂co =
1

LM

∑M−1
j=0

∑L−1
k=0 Vv(j, k)Vh(j, k)∗√
P̂hP̂v

(7)



5. DATA ANALYSIS

Time-series data was collected from CSU-CHILL
radar in hybrid mode. Both 1µs and 0.333µs long
pulses were transmitted and the range returns were
sampled at 0.333µs interval to collect received sig-
nals. Moreover, data collected using pulses with
0.333µs length were used to evaluate the perfor-
mance of the whitening scheme.

5.1. Analysis of Oversampled Data

It has been established through theory and simula-
tion (Torres and Zrnic 2001) that whitening transfor-
mation improves the estimation accuracy of all the
parameters by a factor L2+1

2L , where L is the over-
sampling factor. As mentioned earlier, it is implic-
itly assumed in formulating the transformation that
the source signals have identical variance, or rather
the samples associated with each sub-volume are
realization of the a random process with identical
statistics. In reality this property may not be true.
It’s common to find gradients in the range profile
of various spectral moments (see Fig.3). This has
two implications; the aforesaid assumption yields
a transformation matrix that doesn’t produce a set
of uncorrelated samples. The effect of gradient on
whitening is illustrated in Fig.4. Secondly, the esti-
mation algorithms compute various parameters by
averaging over L range-bins, but the deviation from
ideal condition results in a higher-than-expected es-
timation error.

While estimating the polarimetric variables, the
standard deviation of the whitened estimates do
not show any improvement over their oversampled
counterparts. The standard deviation of the polari-
metric variable estimates are strongly dependent on
the magnitude of ρco, the copolar correlation coeffi-
cient (Bringi and Chandrasekar 2001). It is shown in
Fig.3 that whitening transformation causes a drop in
the co-polar correlation, which nullifies the improve-
ment obtained through whitening.

5.2. Analysis of Shortpulsed Data

As mentioned earlier the whitening algorithm in-
creases the noise power. Equation (8) was used
to correct the ρco estimates in presence of noise,

Figure 3 . Range profile of estimates of spectral mo-
ments and polarimetric variables from oversampled
and whitened data

but noise boost doesn’t seem to account fully for
the drop in ρco.

ρcotrue
=

ρconoisy[
1

1+1/SNR

]1/2 [
1

1+Zdr/SNR

]1/2
(8)

Whitening of oversampled signals is expected
to produce identical estimates as obtained by us-
ing a pulse whose length is reduced by the over-
sampling factor. For an experimental verification,
the performance of oversampled data (1µs pulse
length, 0.333µs sampling) was compared to the
estimates obtained from data collected using a
shorter pulse (0.333µs pulse length, 0.333µs sam-
pling). Next, range samples obtained from using
the shorter pulse were combined to simulate over-
sampled data. The estimates of ρco obtained from
collected time-series (using short pulsewidth), after
combining and whitening are shown in Fig.5 . As
can be seen that after the samples are averaged
in range to simulate oversampling, the correlated
samples in range exhibit a higher copolar correla-
tion.



Figure 4 . Effect of reflectivity gradient on whitening

6. SUMMARY

An extensive study on the applicability of whitening
transform on dual-polarized data has been carried
out. The results indicate the application of whiten-
ing technique could be really effective for estimating
the reflectivity and velocity. However, for polarimet-
ric variables there does not seem to be an improve-
ment because of the drop in correlation. The reason
for drop in ρco is being investigated. Large number
of data sets are being analyzed to explore this fur-
ther.
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