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1. INTRODUCTION  
  
 Dual-Doppler wind analysis methods have greatly 
aided our understanding of weather phenomena ranging 
from mesoscale convective complexes to clear air 
boundary layers (e.g., Doviak et al. 1976; Brandes 1977; 
Ray et al. 1981; Testud and Chong 1983; Chong et al. 
1983a,b; Ziegler et al. 1983; Parsons and Kropfli 1990; 
Atkins et al. 1995; Dowell and Bluestein 1997; Sun and 
Crook 1997,1998; Shapiro and Mewes 1999). However, 
most of these traditional methods still suffer from notable 
deficiencies, including the setting of often-arbitrary 
vertical velocity boundary conditions, spatial interpolation 
and discretization errors, uncertainties in radial wind 
estimates, and the non-simultaneous nature of the 
measurements. The most pronounced difficulties among 
the above concern the vertical velocity boundary 
conditions and interpolation procedure, especially in data 
voids. 
 In order to address the vertical velocity boundary 
problem, Gao et al. (1999) proposed a variational method 
that performs analysis in a Cartesian coordinate and 
permits flexible use of radar data in combination with 
other information (e.g., soundings, or a vertical profile 
obtained with the VAD method). Furthermore, it allows 
for the use of mass continuity and smoothness constraints 
by incorporating them into a cost function. In particular, 
by applying the anelastic mass conservation equation as a 
weak constraint, the severe accumulation of error in the 
vertical velocity can be reduced because the explicit 
integration of the anelastic continuity equation is avoided. 
The method performs well in both idealized OSSE and 
real data cases. However, there exist some difficulties in 
specifying the optimal weighting for each constraint. In 
the previous study, weights were selected based on past 
experience and repeated tuning experiments. Finding the 
optimal weighting for each constraint may require many 
numerical experiments.   
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 In the present study, a new technique, based on a 
standard 3D variational (3DVAR) approach, is proposed. 
In it, a background error covariance matrix, though 
simple, is modeled by a recursive filter, and the square 
root of the matrix is used for preconditioning.  Using the 
recursive filter is a simple and efficient way to spread the 
effect of each radar observation to the analyzed grid 
points (Wu et al. 2002). Recent developments with 
spatially recursive filters (Purser et al. 2002) enable the 
construction of a variational analysis in physical space, 
which allows more degrees of freedom in defining the 
error statistics adaptively. The eventual goal is to have an 
analysis system with inhomogeneous and generally 
anisotropic three-dimensional background error 
covariance. Compared to the smoothness constraint used 
in Gao et al (1999), the recursive filter is more effective in 
achieving the desired spreading of observations to nearby 
grid points, and theory (Purser et al. 2002) provides 
guidance for specifying filter coefficients.  

2. DESCRIPTION OF VARIATIONAL 
METHODOLOGY 

a) Formulation of cost function 
The basic cost function J, may be written as the sum 

of two quadratic terms:  
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The first term measures the departure of the analysis 
vector, x from the background xb, which is weighted by 
the inverse of the background error covariance 
matrix 1B− ; the second term measures the departure of the 
projection of analysis to the observation space, H(x), from 
the observations themselves (yo), which is weighted by 
the inverse of the combined observation and observation-
operator error covariance matrix, R-1. Jc may include 
penalty terms added to the system and may play important 
roles to correlate certain analysis variables. 

The analysis seeks to find a model state ax  for 
which J is at a minimum. At the minimum, the derivative 
of J vanishes. The Hessian of J(x) is:  
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If  2 ( )J x∇ is positive definite, then there exists a unique 
ax  that minimizes the cost function ( )J x .  

By defining 1 1( )bv B x x C xδ− −= − = ,               (3) 
and letting, 
     ( ) ( ) ( )b bH x H x x H x xδ δ= + + H ,                     (4)  
we obtain a new representation of the incremental cost 
function: 
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The Hessian of Jinc is  
    2 1 2( ) T T

inc cincJ x C R C J−∇ = + + ∇I H H ,                     (6) 
where I stands for the identity matrix. Comparing (6) with  
(2), we see that the smallest eigenvalue of the Hessian 
matrix from (6) will be at least larger than unity, so that 
the condition number will not become infinite (Courtier, 
1997). This new Hessian matrix is much better 
conditioned than the Hessian matrix of original problem 
(1). 

The matrix C defined in (5) is realized as, 
C=DF,                                                                  (7) 

where D is a diagonal matrix of the standard deviation of 
the background error. For simplicity, we assume that D 
has diagonal elements specified by the error estimation of 
numerical experimentation. F is a recursive filter (Hayden 
and Purser 1995, Lorenc 1992) defined by 
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where Xi is the initial value at grid point i, Yi is the value 
after filtering for i=1 to n,  Zi is the initial value after one 
pass of the filter in each direction and α  is the filter 
coefficient. This is a first-order recursive filter, applied in 
both directions, to ensure zero phase change. Multi-pass 
filters are built up by repeated application of (8). This 
filter is applied in all three directions.  

In our variational dual-Doppler wind analysis, the first 
term, JB , in the cost function measures how close the 
variational analysis x = (u, v, w) fits the background fields 
xb  = (ub, vb, wb). The background may be provided by a 
previous model forecast, a nearby sounding, or a wind 
profile from another Doppler radar analysis program, such 
as the Velocity-Azimuth-Display (VAD) method 
(Browning and Wexler, 1968). JO  is the difference 
between the analyzed radial velocity, which can be 
approximated (for distance between radar site and data 
point r less than 100 km) as,          
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and the observed radial velocity 0 roby V= . The forward 
operator, H(x), in this case is represented by equation (13) 
and a linear interpolation operator that maps rV  from the 
grid (Cartesian coordinates) to observation points 
(spherical coordinates); and u, v, and w are wind 

components in Cartesian coordinates (X, Y, Z). (X0, Y0, 
Z0) is the radar location.  

The third term, Jc, can be expressed as  
21
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which imposes a weak anelastic mass continuity 
constraint on the analyzed wind field, where 
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and ρ  is the mean air density at a given horizontal level. 
The weighting coefficient, Cλ , controls the relative 
importance of this penalty term in the cost function and 
can be specified based on radar observation (Gao et al. 
2003). 

3. EXPERIMENT RESULTS 
 
 To demonstrate the effectiveness of the described 
variational method for real data, we will apply it to the 17 
May 1981 Arcadia, Oklahoma supercell storm (Dowell 
and Bluestein, 1997). Twelve coordinated dual-Doppler 
scans were obtained from the Norman and Cimarron, 
Oklahoma S-band Doppler radars over a one-hour period 
spanning the pre-tornadic phase of the storm. The analysis 
is performed in Cartesian coordinates with 83×83×37 grid 
points. The grid spacing in the horizontal is ∆x = ∆y = 
1000 m, and in the vertical is ∆z = 500 m. The standard 
deviation of errors for the radar radial velocity is set to 1 
ms-1, and the standard deviation of background errors 
(only a single sounding is used in this analysis) is taken to 
be 10 ms-1.  The analysis domain and the relative 
positions of the two radars are shown in Fig. 1.  
 

 
 
Figure 1. Locations of the Cimarron (0, 0) and Norman 

(40.0, -20.0) radars that observed the May 17th, 
1981 Arcadia storm (shading) and the analysis 
domain (box). 



  
 The results of our analysis for 1641 CST on 17 May 
are shown in Fig. 2. At low levels (Fig. 2a), a cold 
outflow originates from rear flank downdrafts that exhibit 
two maximum centers flanking the occlusion point of the 
gust front.  To the south and east of this region is 
associated surface convergence and positive vertical 
velocity. The reflectivity field shows a hook-echo pattern 
that is roughly consistent with the retrieved flow. Such a 
flow structure is typical of a tornadic supercell storm with 
strong low-level rotation (e. g., Lemon and Doswell 
1979).  
 In a vertical slice through line A-B, a very narrow 
and strong downdraft is located at the center of supercell 
between the ground and 4.5 km altitude and is surrounded 
by a ring of updraft (Fig. 2b). This phenomenon agrees 
with Klemp’s theoretical illustration (Fig. 3 in Klemp 
1987). Because this analysis is valid 25 minutes before 
the tornado occurred, the large horizontal shear caused by 
the narrow downdraft and surrounding updraft could be 
the source of development of the subsequent tornadic 
vortex. At 12-km height, a maximum vertical velocity is 
retrieved and is roughly collocated with the center of 
maximum reflectivity. These features suggest that both 
horizontal and vertical flows are kinematically consistent. 
They qualitatively agree with those analyzed in Dowell 
and Bluestein (1997) and Gao et al. (1999).   

 

4. SUMMARY  
 
 In traditional dual-Doppler analysis, the need for 
explicitly integrating the mass continuity equation, as well 
as including ‘hole-filling’ procedures, increases the 
solution sensitivity to boundary condition uncertainties. In 
addition, the separate interpolation from radar observation 
data points to analysis grid points in traditional methods 
can introduce errors. In this paper, we developed and 
tested a variational analysis scheme that is capable of 
retrieving and analyzing three-dimensional winds from 
dual-Doppler observations of convective storms. With our 
method, the horizontal and vertical wind components are 
analyzed together by adding to the cost function a weak 
constraint of anelastic mass continuity. The use of a weak 
instead of strong constraint also leads to procedural 
simplicity in that the explicit solution of an elliptic 
equation that would arise from the use of a strong 
constraint is avoided. The latter tends to be sensitive to 
the specification of boundary conditions. This finding also 
agrees with Gao et al. (1999). The application of the 
method to a supercell tornadic storm case is very 
promising.  

It is our plan to generalize our variational analysis 
procedure to include additional data sources, and to 
introduce dynamic constraints in the cost function so that 
thermodynamic fields are retrieved simultaneously with 

the winds. This procedure is expected to further improve 
the wind analysis. 
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Figure 2. Wind vectors, vertical velocity (contours) analyzed 

from data sampled by two Doppler radars (located at Norman 

and Cimarron of Oklahoma) using the variational method for 

Arcadia, OK at 16:34 CST, 17 May 1981 tornadic storm. Also 

shown as shaded contours of the reflectivity field. a) Horizontal 

cross-section at z = 0.3km; b) Vertical cross-section through 

A-B line in panel a). Rear flank gust front at this level is 

indicated by the cold front symbol in a). Radar observations 

are only available where there is reflectivity shading. 
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