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1. INTRODUCTION 

Raindrop size distribution (DSD) is formed as 
complicated microphysical processes in rain, and 
important for cloud microphysics and radar rainfall 
remote sensing. The modeling of DSD has been a 
long-year interest in radar meteorologists. In recent 
years, the “normalization” of DSD has been studied 
extensively to simplify the problem of variability of 
DSD and relations between integral rain parameters 
(IRPs) (e.g. Dou et al., 1999; Testud et al., 2001; 
Illingworth and Blackman, 2002). The normalization 
is made with the two quantities; normalized N0 (N0*) 
and either median volume diameter (D0) or mean 
volume diam eter (Dm), N0* being given as a ratio of 
the 3rd moment of DSD (M3) to D04 or Dm4 with a 
proper scaling. The fundamental concept is that the 
liquid water content (LWC, proportional to M3) is the 
central to the normalization because it has a clear 
physical meaning and is also important for rainfall 
remote sensing. We can notice, however, that the 
weighting function to obtain a “mean” diameter need 
not be the mass of a drop. Other weighting can be 
used as well. The parameter N0* is modified ac-
cordingly. With such generalization, we could get 
more insight into properties of DSD theoretically and 
experimentally. In this paper, a concept of the gen-
eralization of normalized N0 is described and rele-
vance to radar rainfall remote sensing is discussed. 

2. Definition of generalized N0* 

 Let us assume that we have a DSD, N(D), which 
may be fitted with a functional model (e.g., a gamma 
model). Regardless of the selection of the model, we 
have xth moment Mx (x is in general non-negative 
integer but non-negative, non-integer number can be 
used as well). 
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Assuming the gamma model, N(D) is expressed as: 
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The moment Mx is given by 
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If we fix µ, the scaling parameter Λ can be obtained 
from the two different DSD moments, Mx and My as 
follows: 
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where Λxy indicates the Λ derived from  Mx and My. 
If y - x = 1, My/Mx can be regarded as  “Mx-weighted” 
mean drop diameter,  Dmx, and the ratio of the 
gamma function in Eq.3 (Γ(µ+y+1)/?Γ(µ+x+1)) be-
comes  µ+x+1. Thus, in the case of y - x = 1, we have 
the expression: 
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where Λx indicates the Λ derived from Mx and Mx+1. 
When x = 3, it is the same as Dm used in Testud et al. 
(2001). We focus our attention to the cases where y - 
x = 1 to simplify the discussion. 
  We next try to derive the expression of DSD with 
Dmx and corresponding “generalized N0*”. Noting 
that the relation between N0 and Mx (Eq.2), N(D) is 
expressed as: 
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Also Mx is related to Dmx and N0 (or N00 in the case 
of µ = 0, where N00 stands for N0 in the exponential 
DSD model). 
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Thus it is reasonable to define a “generalized N0*”, 
N0x* as 
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The N0* defined in Testud et al. (2001) is the N0x* 
with x = 3. (Note that it is basically defined only with 
LWC and Dm.) Using the parameters Dmx and N0x*, 
and letting x1= x + 1, N(D) is expressed as  
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This is consistent with Eqs.16 and 17 in Testud et al. 
(2001). In this “generalized” version, N0x* is recog-
nized as the intercept parameter of the exponen-
tial-fitted DSD of interest having the same xth mo-
ment Mx and Mx-weighted mean diameter Dmx. 
3. Moment relations from disdrometer data  
 It is anticipated that the characteristics  of normal-
ized DSD thus obtained, and relations between 
normalized IRPs depend on the value of x. In Fig. 1, 
scattergrams between original R and Z, and normal-
ized R and Z (R/N0x* and Z/N0x*) are plotted for x = 0  
to 5 using the disdrometer data with 3-min integration, 
having drop counts > 200 and R > 1 mm/h, measured 
at Gadanki, south India, between September 1997 to 
December 1999, where seasonal variation of DSD 
properties is very significant (Kozu et al., 2001). It is 
clear that as x approaches 3 or larger, the effect of 
the normalization to reduce the scatter is clear. The 
best correlation is obtained when x is around 4, al-
though x = 3 also gives an excellent fit. We should 
note that the effect of normalization depends on the 
IRPs of interest and x = 4 would not be the “univer-
sal” optimum value. 
4. Normalized Mi-Mj relation: Gamma DSD 

  Using Eq.7 and eliminating Dmx, we have the rela-
tion between DSD moments Mi and Mj normalized 
with N0x*, i.e. Mix* ≡ Mi/N0x* and Mjx* ≡ Mj/N0x*: 
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Fig.1. Scattergrams of R and Z, and normalized R and Z with x = 0, 3, 4, and 5.
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where i1 = i + 1, j1 = j + 1. Letting x1= x + 1,  
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Given a set of i, j and x, the normalized moment re-
lation is expressed with a simple power law. The co-
efficient is the product of two parts; the first one Cµ is 
a function of µ, and the second one Cx is constant. 
Fig.2 shows the dependence of Cµ on µ from 0 to 8 
for the normalized M6-M3.67 relation (almost the 
same as that for the normalized Z-R relation). It is 
found that Cµ is nearly constant (independent of µ) 
when x = 4.2, which is consistent with the finding from 
the Gadanki disdrometer data. 
  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

As we anticipated above, the “optimum ” x in the 
sense of minimizing the µ dependence of Cµ is de-
pendent on the values of i and j; when i = 3 and j = 6, 
x = 3.7 is optimum. We can find an optimum x for any 
combination of i and j. What does this imply?  

If we find the “best” x (xo), the coefficient CµCx in 
Eq.9 becomes independent of µ and we can use µ = 
0 instead of general values of µ:  
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Eq.12 (and Eq.9 with xo) implies that the relation 
between DSD moments normalized by N0xo* has the 
coefficient independent of µ. Finding the value of 
N0xo* for a DSD (or a set of DSDs) that is deter-
mined from Mxo and Mxo+1 is equivalent to defining 
the Mi-Mj relation. It is noted that the exponent is not 
necessarily i1/j1 since N0xo* is generally a variable.  

The reason of the stability of N03*-normalized 
moment relations originally recognized (Dou et al., 
1999; Testud et al., 2001) should be that x = 3 ap-
proximately satisfies the above optimum condition.  

5. Validity of 2 or 3-parameter expression of DSD 

 What we found from the consideration of moment 
relations normalized with N0x* and its “optimum ” 
value can be summarized as follows: 

(i) Although we have derived N0x* assuming the 
gamma DSD model, this assumption is not actually 
necessary because N0x* can be defined from Mx, 
Mx+1 and a constant x1x1/Γ(x1). When x is around 4, 
we may relate N0x* with physically meaningful rain 
quantities , i.e. rain attenuation coefficients, ap-
proximately proportional to higher order moments 
(Kozu, 1991). The finding from the disdrometer data 
analysis indicates that DSD can be expressed as a 
set of three parameters (i.e. N0x*, Dmx and Mj, or 
equivalently Mx, Mx+1 and Mj) for a limited drop di-
ameter domain (significant to higher order moments). 

(ii) DSD can even be expressed as two parameters 
since x =  5 also gives an excellent correlation be-
tween normalized R and Z in which x+1 = j = 6. 

(iii) With having the three DSD parameters above, 
we can apply any DSD models . In the case of the 
gamma model, the variability of the relation between 
normalized moments appears to be expressed as 
the variation of the shape parameter µ. It is noted 
that the excellent correlations between normalized Z 
and R experimentally obtained (Fig.1) are quite con-
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Fig.3. Same as Fig.2 but for M6-M0 relation. 



 

   

sistent with the properties of power law relations 
assuming the gamma model (Eqs.9-12). 

 A question is to what extent we can apply the 2 or 3 
parameter expression of DSD. A way to examine this 
is to check the variability of Cµ  in the relation be-
tween lower- and higher-order DSD moments (e.g. 
M6-M0), which is shown in Fig.3. We can clearly see 
that Cµ is heavily dependent on µ for most x values. 
When x = 0.8 to 1, however, Cµ is almost constant 
over the µ values considered. We know that the 
correlation between M6 and M0 is very small in gen-
eral. How about the correlation between M0 and M6 
normalized with N01*? A test result using the same 
disdrometer data is shown in Fig.4 along with the 
gamma model relations (Eq.9 with i=6, j=0, x=1, µ=4). 
It seems that the normalized M6 and M0 are fairly 
well correlated and consistent with the gamma 
model; however, we need to be careful about this 
result because the Joss-disdrometer may be inac-
curate to measure M0, in particular when µ is small. 
The scatter of the measured points from the gamma 
model line indicates the variation of µ or departure of 
actual DSDs from the gamma model. It is noted that 
the goodness of the correlation is very sensitive to x; 
it becomes much worse when the normalization is 
made with, e.g. x = 0 or 2.  

6. Concluding remarks 

 The expression of DSD with the parameters (N0x*, 
Dmx, µ), through the generalization of N0* by 
“generalizing” the weight to obtain mean diameter 
from D3 to Dx, is an extension of the original version 
(N0*, Dm, µ) (Testud et al., 2001). In contrast with the 
original version, N0x* and Dmx may not have clear 
physical meaning. Nevertheless, it can be defined 
without assuming a specific DSD model and may 
keep some physical meaning when x = 4 to 5, con-
sidering that rain attenuation coefficients are ap-
proximately proportional to higher order DSD mo-
ments. Using an “optimum ” x, which is dependent on 
the order of the DSD moments of interest, the cor-
relation between the normalized moments can be-
come nearly perfect. This finding again confirms the 
well-known fact of the validity of expressing DSD 
with 3 parameters, or even with 2 parameters within 
the limitation of “DSD expression for relating higher 
order moments ”. The normalization of DSD with this 
scheme appears to be useful because it can express 
the DSD by 3 terms separately; magnitude, scale, 
and shape, with a proper weighing that can be ad-

justed depending on the DSD moments (or IRPs) of 
interest. With the optimization of x, the variability of 
relations between two different DSD moments can 
totally be included in the variability of N0x*, which 
may be useful to simplify radar rainfall remote sens-
ing problems in which many unknown rain parame-
ters are generally involved. More study is needed for 
the physical meaning of this optimization and how it 
is reflected into the normalized shape of DSD.  
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Fig.4. Scattergrams of normalized M6 and M0 with x = 
1, and corresponding gamma model relation with µ = 4.
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