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1.  INTRODUCTION:

In the arena of oil spill trajectory forecasting,
standard nowcast/forecast models predict the
movement of spilled oil out to 36-48 hours.
Generally, most models are unreliable if used
beyond 36-48 hours due to the cumulative errors
that compound due to the uncertainty in the
input parameters.  Research conducted at
NOAA’s Hazardous Materials Response Division
(HAZMAT) indicates that the primary error that
prohibits accurate long-range forecasting is the
wind uncertainty.  This paper will investigate a
method to analytically compare persistence and
forecast winds to historical winds for two
particular spill events.
This paper will present a simplified approach for
comparing wind events, persistence or forecast,
to a region’s climatological record and
ascertaining whether a predictable pattern in
regional winds exists.

2.  PROCEDURE:

The procedure involves selecting a set of past
wind records corresponding to the forecasted
wind records, to the lowest possible threshold
value ( Eg).  This set of past wind records can

then be extrapolated into the future, yielding a
distribution of likely future wind patterns.

If we turn the time dependent forecast into a
complex wind variable Akj

Akj(t = tj) = Uk (t j ) + iV (tj )

Here Uk (t j ) is the kth forecasted x-component

of the wind at time t j . V(t j)  represents the y-

component.  A similar set of historical wind
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segments Bkj can be generated by choosing

different starting times in the past wind history of
the location of interest.

The mean difference between the forecasted
and historical winds can be calculated by

Ek =
| Akj − Bkj |

t j < T
∑

T

Ek is then calculated for ever hour time t in the

historical record Bkj  . The result is a time series

of Ek values. This time series is examined to

determine all the local minimum values.
Minimums are chosen, as when  Akj  is a close

match to a particular segment of the record, as
you get closer to the best match time, Ek

decreases in value, and then increases as you
move past the optimum match time. Therefore,
the best match will be a local minimum in Ek

time series.  Many of the local minimums are
clustered together (see figure 1). As an optimum
match is sought, each minimum is checked to
see if it is the lowest local minimum within the
length of the match record, T, and is only
retained if it is the lowest value. The result is a
set of times for which the match record can be
considered a local best match to the measured
record, each with an associated error, Ek . The

threshold value, Eg is chosen by selecting the

user-defined number of the minimums with the
lowest associated errors. Eg is the largest error

of the selected set of minimums, Dj , which are

considered the match set. An example of a plot
of Ek  versus time is seen in Figure 1., with the

local minimums highlighted.

Figure 2, is a schematic of forecast and
persistence error over time. At some time T, the
dynamic forecast error will become greater than



the variability of climatology and persistence
error will become asymptotic with that variability.
Depending on the region, T is generally 36 to 48
hours.  The variability of the mean error Ek , in

relation to the data, will give a general scale of
the variability of regional wind patterns.

Dj  is an array of minimum errors in time. Let

Ji be the array of times associated with each

minimum error Dj .  Hence, this Ji  represents

the times in history of the best possible matches
between either persistence from a spill start time
of length T or a given forecast from a spill start
time of length T.

The measured records, Mi, that follow each of

the matched records, are the set of possible
wind patterns that could follow the original match
pattern Akj . A statistical oil spill model that uses

these patterns, should result in a bound on
possible spill behavior following the match time
(see section 6).

The question remains as to whether this chosen
set of patterns will result in a narrower set of
possibilities than simply randomly selecting time
periods from the climatological record.

To test this hypothesis, two regions were
statistically examined.

3.  THE REGIONS:

Two topographically different areas were
chosen.  Both of these areas had archived oil
spill data or on-going oil spill data.  The first spill
region analyzed was Tampa Bay, Florida.  On
August 10, 1993, two barges and a freighter
collided in the entrance to Tampa Bay.  The
barge Bouchard 155 spilled approximately
210,000 gallons of #6 fuel oil into the bay.
The second spill region analyzed was 12 miles
west of the entrance to San Francisco Bay.  The
SS Luckenbach sank in 1953 due to a collision
but only recently has the vessel started to leak.
A salvage operation began in May 2002 to
lighter the oil from the sunken remains.  Since
then, several small oil spills have occurred.

4. ANALYSIS:

To test the predictive capability of this approach,
data from the two regions were examined, and
set of randomly times were chosen for each.

These times represent what would operationally
by an oil spill or other event for which a forecast
of the wind behavior is desired. For each of
these times, the wind record both before and
after the event is known. Operationally, only the
wind record before the event time would be
known. The record before the event time, Akj , is

then matched against the entire record, as
outlined in section 2, resulting in a set of
matches times Ji , and associated patterns, Mi,

of length Q. Q is the time period for which a
forecast is desired. Each Mi is compared to the

measured record following the event time,
resulting in a set of associated Ek values. The

same procedure is repeated, using a randomly
selected set of patterns Ni , from the historical

record. The Ek s from the selected set and the

random set are compared. If the errors are
consistently lower for the selected set, then the
method is shown to reduce the bounds on
possible oil spill behavior following the match
time, Akj .

This approach was followed for the two regions
of interest, Tampa and San Francisco Bays. For
this analysis, the match period, T, is 36 hours,
the forecast period, Q is 72 hours, and the 20
matches with the lowest Ek  values were found

for each record. The analysis was repeated for
20 randomly selected event times in each
record. the mean of the results over each of
these 20 were computed.

Tampa Bay:
mean Eg : 3.79

mean Ek  for matched set: 8.44

mean Ek  for the random set: 10.58

San Francisco Bay:
mean Eg : 4.17

mean Ek  for matched set: 10.38

mean Ek  for the random set: 13.10

All of these values are in knots. In an oil spill, the
oil is moved by the wind at approximately 3% of
the wind speed. Thus, the Ek  values given

above represent a variation of the distance that
the oil might be moved by the wind over the 36
hour prediction period. The lower value for the
matched set represents a smaller range of
possible locations the oil could impact.



For example, for the Tampa results, the possible
impact zone is reduced by about 2.3 miles. For
San Francisco, the zone is reduced by about 2.9
miles.

This approach provides a tool to help determine
the range of possible oil spill movement for
about 36 hours. However, 36 hours into the
future from any given event time is well covered
by dynamic forecasting. The goal is to extend
the period in which we can predict something
about oil spill behavior beyond the range of
accurate dynamic forecasting. This can be
accomplished by leveraging a spot forecast for
the event. In this case, the spot forecast is used
as Akj  to find matching patterns in the historical

record, rather than the recently measured data.
this can extend the prediction period by the
duration of the spot forecast.

5.  FORECAST INTERPRETATION:

The method for the interpretation of the wind
forecasts is described in (Lehr, et al, 2002).
Here are the two oil spill incident examples.

The initial forecast during the Bouchard spill in
Tampa Bay was E-NE winds at 15 knots shifting
to be from the west at 5 knots by the afternoon
hours.  E-SE winds at 15 knots were predicted
through the evening hours.  E-NE winds at 10-
15 knots were forecast throughout the next day.
Using this method, the forecast translates into
day, month, year, hour, minute, wind speed,
wind direction format, as follows:

10,08,1993,06,00,15,070
10,08,1993,13,00,05,270
10,08,1993,17,00,05,270
10,08,1993,18,00,15,110
11,08,1993,06,00,12,070
12,08,1993,06,00,12,070

For the Luckenbach spill off the coast of San
Francisco Bay, the initial forecast was NW winds
at 15-20 knots increasing to 20-25 knots by the
afternoon.  NW winds at 20-25 knots were
predicted through the evening hours with NW
winds at 20 knots forecast for the next day.  The
forecast was interpreted to the following text file:

30,05,2002,06,00,18,315

30,05,2002,11,00,18,315
30,05,2002,12,00,22,315
30,05,2002,17,00,22,315
30,05,2002,18,00,22,315
31,05,2002,05,00,22,315
31,05,2002,06,00,20,315
01,06,2002,05,00,20,315

For Tampa Bay, an error Ek  versus time plot

was computed (see Figure 3) and minimum
error values Dj  below a threshold Eg=5.6,

calculated using 20 matches, was produced.
This demonstrates that an forecast record can
adequately match the historical record.

6.  LONG-RANGE OIL TRAJECTORY
FORECASTING:

General NOAA Oil Modeling Environment,
GNOME (Beegle-Krause, 2001) is the nowcast/
forecast model that is used by HAZMAT.  This is
a simple model that uses two dimensional
physical processes to move lagrangian elements
(LE’s), representing quantities of oil, throughout
the water.  GNOME uses tides, hydrology,
currents, winds and diffusion to move the LE’s.
Trajectory Analysis Planner (TAP) (Barker,
2000) and Extended Outlook are, respectively,
HAZMAT’s area contingency planner and long-
range forecasting model.  Extended Outlook
uses three dimensional arrays (cubes)
generated by GNOME and other post
processors and displays the output on a
waterbased grid.

The data for Extended Outlook is generated by
running GNOME using the selected measured
records Mi.  These results show the bounds of

possible oil movement.

7.  CONCLUSION

This paper presented a simple approach for
comparing a given wind pattern to a region’s
climatology and, by selecting a few variables (T,
Q and Eg), accumulating specific measured wind
patterns that can be used to enhance long-range
spill trajectories and ascertain the nature of a
region’s wind variability.

There are obvious limitations to this analysis.
This process can only be used in data rich
areas, specifically, areas with long robust



historical wind records (C-Man stations, buoys,
ASOS and AFOS stations).

Future research should include applying this
technique to several other topographically
different spill areas, seasonalizing the historical
winds, building in an analytical method to
optimize Q and T to obtain the best match
results.
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