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1. INTRODUCTION

The Experimental Climate Prediction Center
(ECPC) at the Scripps Institution of Oceanography
has been making extended Regional Spectral
Model (RSM) forecasts since September 27, 1997
(Roads 2003; Roads et al. 2003b).  This model
produces regional 16-week forecasts of common
atmospheric elements such as temperature,
relative humidity and precipitation every weekend,
which are also directly relevant to fire weather
meteorologists, fire and fuel specialists and fire
management.  In addition to these elements, the
RSM also calculates fire danger indices for the
continental United States.  While the skill of the
meteorological variables and fire danger indices of
this RSM model have been examined (Roads et
al . 1991; 2003a), they have been primarily
ascertained against the network of observations
used to initialize the model.  However, the
observations used to initialize the model are taken
primarily from urban sites and other locations that
are not necessarily representative of fire danger
areas.

It is therefore of interest to assess and
understand the skill of the RSM in comparison to
observed atmospheric measurements and fire
danger indices.  Land managers will, as a result of
this analysis, be able to identify the location, time
scale, and time of year where the model is most
skillful.  This will provide an improved
understanding of model forecast skill, and help
establish a level of trust or confidence to be placed
in an RSM forecast for a given time and location.
For research meteorologists, this analysis
functions as a performance measure that will be
helpful in fine-tuning and further development of
the model itself.

1.2 RESEARCH OBJECTIVES

The objective of this study is to assess the
accuracy of the ECPC weekly, monthly and
seasonal  RSM   forecasts,  compared  to   remote
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automated weather station (RAWS) observations,
with emphasis on the elements most related to fire
danger (e.g., temperature, moisture and wind), as
well as an evaluation of predicted National Fire
Danger Rating System (NFDRS) indices
(Bradshaw et al. 1983; Burgan 1988; Deeming et
al. 1972; Deeming et al. 1977; NWCG 2002).
Specific ECPC forecast atmospheric elements
examined include maximum, minimum and
average daily surface temperature, maximum,
minimum and average daily surface relative
humidity, surface wind speed, precipitation amount
and precipitation duration.  The ECPC forecast fire
danger indices that were examined include the
Burning Index (BI), Spread Component (SC),
Energy Release Component (ERC) and Ignition
Component (IC).  While ECPC has already
performed accuracy tests on both atmospheric
and fire danger model output, they have not done
so with RAWS data.  The analysis in this study
complements the skill tests performed by ECPC.

Though the ECPC forecasts cover the
continental U.S., the primary RAWS network is
currently located in the West, the spatial focus of
this study.  Geographic sub-regions are
individually evaluated to increase the spatial
resolution of the analysis.  Temporally, the study
includes year-round model performance, as well
as the distinct summer and winter seasons.

2. DATA

Three primary data sets are used in this
study:  ECPC RSM forecasts, ECPC RSM
validation, and RAWS observations.  The spatial
domain for all datasets covers the western United
States and includes approximately 100ºW to about
125ºW, and 30ºN to 50ºN.  All data sets are
inclusive of the period from September 27, 1997
through December 31, 2002.

2.1 ECPC RSM FORECAST DATASET

Every weekend, ECPC makes a 16-week
RSM forecast for surface temperature (daily
minimum, maximum and mean), relative humidity
(daily minimum, maximum and mean),
precipitation amount, hours of precipitation, mean



afternoon wind speed (defined as 1200 to 1800
hours), IC, SC, ERC, and BI.  Model output
consists of daily values that are averaged to
create weekly means that can then be combined
into monthly (four-week) and seasonal (12-week)
means.  Each extended forecast (275 total from
September 27, 1999 through December 28, 2002)
was evaluated in the form of twelve one-week
means, three one-month means and one seasonal
mean (only the first 12-weeks of each 16-week
forecasts were examined in this study).  These
forecasts have a spatial resolution of
approximately 0.6 degrees (approximately 60 km)
and comprise 58 x 97 grid nodes (covering the
entire contiguous U.S.), where each node
represents the spatial position of the forecast
output elements.  Because the majority of RAWS
are located in the western US, only the 43 x 39
grid nodes over the West are used in this study.

2.2 ECPC RSM VALIDATION DATASET

Every day ECPC makes one-day RSM
forecasts based on the 00 UTC NCEP operational
analysis initial conditions.  These are referred to
as the ECPC validation forecasts.  The validation
forecasts are not identical to the operational
analysis (which uses the latest high-resolution
global model) that are based on 6-hour forecasts
made four times daily, but can be considered a
useful approximation (Roads et al.  2003b; c).  As
with the extended forecasts, they contain all
thirteen atmospheric elements used in this study
and are contained within an identical spatial grid.
They are archived as weekly averages of daily
values and essentially function as validating
observations.  There were 286 weekly averages of
validation data used in this study, including the
first eleven weeks of data from 2003.  Acquisition
of the 2003 data was necessary to evaluate the
extended forecasts made in late 2002.

2.3 RAWS

Land and fire management agencies retain an
observational network of remote automated
weather stations (RAWS) for fire weather related
measurements (see http://www.fs.fed.us/raws).
They are typically located in wilderness, forest and
rangeland areas where it is desired to monitor fire
danger.  The hourly observations are transmitted
to the National Interagency Fire Center (NIFC)
using a geostationary operational stationary
satellite (GEOS) operated by the National Oceanic
and Atmospheric Administration (NOAA).  These
data are forwarded to the Weather Information

Management System (WIMS) for agency use
distribution, and to the Western Regional Climate
Center (WRCC) for historical archiving.  The
RAWS data used in this study were obtained from
WRCC.  From this dataset, RAWS surface
measurements of daily minimum temperature,
daily maximum temperature, daily mean
temperature, wind speed, daily minimum relative
humidity, daily maximum relative humidity, daily
mean relative humidity, precipitation and hours of
precipitation were extracted and used in the
analysis.  WIMS provides site descriptors (fuel
model, slope, climate class, etc.) for each RAWS,
which, combined with the above atmospheric
elements, allows for the calculation of fire danger
indices (BI, IC, ERC, SC).  Larry Bradshaw, U.S.
Department of Agriculture Missoula Fire Sciences
Laboratory, provided the original NFDRS
computer software code for calculating the indices
that was then adapted to fit the RAWS data format
used in this project.

There were 262 RAWS sites in the western
U.S. that had sufficient quality data for the years
1997-2003.  Observational data through 2003 was
needed to verify the seasonal RSM forecasts
made in late 2002.  Sites were chosen based on
three criteria regarding completeness of the data
set – 1) no more than two months of missing data
in any year, 2) availability of year-round
operational measurements, and 3) availability of
historical data for the period September 1997
through March 2003.  Measurements that were
clearly in error (e.g., relative humidity over 100
percent, negative wind speed) were considered
missing and excluded from the analysis.  There
were 477 RAWS with data histories from
September 1997 through March 2003 that were
missing weeks, months or years of data, mostly
due to instrument error or seasonal operation, and
therefore were unsuitable for use in this study.

3. METHODS OF ANALYSIS

There are three major components to this
study.  The first is a comparison of the RAWS
observations to the RSM forecast output.  The
second is a comparison of the RAWS
observations to the RSM validating observations.
The third is a comparison of the RSM forecasts to
the RSM validating observations.  Each of these
components examines the results for the western
U.S. as a whole and then for regions within this
area.  In addition, these studies are done for the
twelve one-week, three one-month and one
seasonal mean for every forecast.  Comparing the
RSM observations to the RSM validations only



involves a weekly, monthly and seasonal mean
(no forecasted values, just comparing two sets of
observations).

A quality control (QC) analysis was
performed on the RAWS data for 263 stations that
met the initial acceptance criteria described in
section 2.3.  The data were checked for suspicious
values (spikes) through a visual inspection of the
time series for each variable and RAWS site.
Measurements that were clearly in error (e.g.,
relative humidity over 100 percent, negative wind
speed) were considered missing and excluded
from the analysis.  One RAWS was removed from
the study as a result of this process (leaving 262
total stations for analysis), as it appears to have
been physically moved at some point in the last
five years.  The RSM forecast and validation files
did not require a similar QC process, but were
visually examined via time series plots to ensure
their sufficient internet file transfer from ECPC to
local files.

In order to compare the RAWS observations
to the RSM forecast or validation data, it was
necessary to match the data sets both temporally
and spatially.  The RSM forecasts are output as
weekly averages of daily values out to sixteen
weeks (although this study only examines the first
twelve weeks of these forecasts for a seasonal
emphasis), and are produced every weekend.
The RAWS observations include the 1300 local
time observations of temperature, humidity and
wind speed needed for the calculation of the
NFDRS indices, as well as the daily values for
maximum and minimum temperature and relative
humidity, precipitation, and the mean afternoon
wind speed (1200 to 1800 local time).

The first step in matching the datasets was to
transform these daily values into weekly averages
of daily values.  The 1300 local time observations
were used to calculate daily values for the four
NFDRS indices, while the daily maximums and
minimums of temperature and relative humidity
were used to calculate daily averages.  The
weekly mean of these daily values was then
calculated with the dates for each weekly mean
matching exactly the dates for the RSM forecast
weekly means.  Weekly means with missing
values for three consecutive or four
nonconsecutive days were considered missing.
The weekly means of all three datasets were then
transformed into monthly and seasonal means.
For the forecasts, monthly means were calculated
by taking the means of weeks 1-4, weeks 5-8, and
weeks 9-12 of each twelve-week forecast.
Monthly means for the RSM validation and RAWS
datasets were computed in the same manner, but

using the weekly means for the twelve-week
period matching each 12-week forecast.  Likewise,
forecast seasonal means were computed by
taking the mean of all twelve forecast weeks.
RAWS and RSM validation seasonal means were
computed by taking the mean of the twelve weeks
matching each 12-week forecast.

Once the three datasets were matched on a
temporal scale, the next step was to match them
spatially.  The RSM forecast and validation data
were output as a grid of values separated by a
distance of roughly 60 km.   RAWS observations
are spatially dissimilar in that they are spaced in
an irregular pattern that is not in any way aligned
with the model grid output (see Figure 1).
Extrapolation of the station data to a grid matching
that of the RSM output was ruled out due to
potential error in the values at extrapolated grid
nodes with no nearby RAWS or that are close to
RAWS with missing data.  In this case,
interpolating the forecast grids to RAWS locations
seemed a more accurate method of comparing the
datasets.  The values in the RSM validation and
forecast grids were bilinearly interpolated to match
each of the 262 RAWS locations used in this
study.  This bilinear interpolation algorithm
determines values between grid nodes by
calculating a distance-weighted average of values
at the nearest four nodes.  For the sake of
consistency, the ECPC validation versus ECPC
forecast comparison uses the forecast and
validation grid values as they are interpolated to
RAWS sites, rather than a direct comparison of
the forecast and validation output grid nodes.

Figure 1  RAWS locations (red triangles) with RSM
output grid overlay (blue lines).



The purpose of forecast verification is to
determine the quantitative accuracy of the
forecast.  The statistical methods employed in this
study as a means of forecast verification are bias,
root mean square error, anomaly correlation, and
standard deviation.  Due to space constraints, the
root-mean square error and standard deviation will
not be discussed here.

Bias is a simple calculation of forecast minus
observation (Wilks 1995), or

† 

bias = f - o , (1)

where f is the forecast value and o is the value of
the observation.  When shown in graphical form,
this calculation has the benefit of revealing under
what situations the model is over or under
forecasting and by how much.  It is also useful in
determining potential seasonal characteristics in
the errors between the datasets.

Anomaly Correlation is commonly used to
evaluate extended forecasts.  It is designed to
reflect good forecasts in the pattern of an
observed field, not necessarily the magnitude of
the values (Wilks, 1995).  There are two different
equations, representing the two types of anomaly
correlation used in this study.  The first is for
judging the spatial variation and correlation of the
anomalies (Equation 3; Roads et al. 2003b;c).
The second is better described as temporal
variations in spatial correlations (Equation 4; Wilks
1995).  Anomalies are computed by taking the
difference between the total forecast (either by
region or for the entire Western U.S.) and the
climatological monthly means.  In other words,

† 

A = f - C f , (2)

where A is the anomaly, f is the forecast and Cf is
the climatological mean for that forecast type
(weekly, monthly or seasonal mean).

Given that A is a forecast anomaly of any type
(weekly, monthly or seasonal mean) and that B is
the validating anomaly from observation, the
spatial variation in the anomalies is represented by
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where N is the total number of forecasts (N = 275
for each forecast type in the complete time

period).  Similarly, the temporal variations in the
spatial anomaly correlations (AC, sometimes
known as pattern correlation) are calculated using
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where M  is the total number of RAWS in the
current region (M  = 262 for the western U.S.).
Missing values in the observational anomalies for
either Equation 3 or 4 reduce the anomaly
summations for both datasets by the number of
missing values (the missing RAWS values and
matching interpolated validation or forecast values
are removed).

Computing the anomalies for each dataset
requires a calculation of the climatologies for each
variable and forecast type in the three separate
datasets.  Computing and using climatologies for
use in determining the anomaly correlations is
difficult in that the RSM forecast periods do not
reset at the beginning of every year, they just
continue making the same forecasts every
weekend no matter what time of year it is.  This
means that the first forecast of one year will not
quite match the same dates as the first forecast of
another year.

The climatologies for each variable and
forecast type were calculated in a manner to solve
or at least mitigate this date matching problem.
First, rather than try to somehow compare weekly
averages that do not span the same dates from
year to year, it was decided to compute monthly
climatologies for all forecasts beginning in a given
month.  Thus, the climatology for any given week
contains twenty values as opposed to just five.
For example, a one-week forecast made in mid-
June will be compared to a climatology consisting
of all one-week forecasts made in the month of
June during the five-year period.  Likewise, the
fifth week of a twelve-week forecast would be
compared to a climatology consisting of all fifth-
week forecasts made in June, a one-month
forecast mean compared to a climatology of all
mean one-month forecasts made in June, and so
forth.  Of course the two observational datasets
(RAWS and RSM validation) do not contain
extended forecasts, but the climatologies for the
weekly, monthly and seasonal means matching
the forecast dates were computed in the same
manner.



Finally, the climatologies for each variable and
time-span are smoothed in order to increase the
accuracy of the anomaly correlation.  In other
words, the twelve climatologies (January to
December) for a given variable and forecast type
are interpolated (in this case linearly) to each
individual day within each month.  For instance, if
the March climatology of daily maximum
temperature for seasonal forecasts made in March
has a value of 70°F and the April value for the
same climatology is 80°F, each day between
March 15 and April 15 increases by a regular
amount from 70°F to 80°F.  Therefore, the
anomaly computed for a seasonal forecast of
maximum temperature made on March 23rd would
then use the smoothed climatology value for
March 23rd (in this case about 72.66 °F).

Comparisons were also done involving the
summer and winter months separately.  The
performance of the model in summer months is of
obvious interest from a fire danger aspect since
this is when for most areas in the West the fire
season occurs.  Wintertime performance of the
model, while still having relevance to fire danger in
areas with warmer climates (i.e., Arizona and
southern California), is done here mostly for
comparison and contrast with the summer
forecasts.  They also demonstrate the response of
fire danger indices calculated in the model with
seasonally varying atmospheric elements.  In
summer cases, the study included all weekly
forecasts made in June, July or August (JJA), all
monthly forecast means that fall within JJA, and
the seasonal forecast for each summer (the
seasonal mean from the first forecast week in
June).  The winter analysis likewise included all
weekly forecasts made in December, January or
February (DJF), all monthly forecast means that
fall within DJF, and the seasonal forecast for each
winter (the seasonal mean from the first forecast
week in December).

4. ANALYSIS

While analyses based on standard deviation,
bias and root-mean square errors were performed
in this study, only the temporal and spatial
analysis for anomaly correlation are presented
here.  Winter analyses are similarly excluded due
to space constraints.

Figures 2 and 3 show for each type of forecast
mean the anomaly correlation (AC) performance
on a year-round basis of each weekly, monthly
and seasonal mean.  The RAWS versus forecast
(RF), RAWS versus validation (RV) and validation
versus forecast (VF) comparisons are all

displayed.  The solid line represents the AC for
forecast weeks 1-12 from the RF comparison.
The dashed line is the same but for VF.  The
average RF (S) and VF (r) month 1-3 means are
listed on weeks 2, 6, and 10 (the midpoint of each
monthly mean).  The average RF seasonal mean
(square) is listed on week 6.  The AC of the RV
weekly (A), monthly (s) and seasonal (o) means
are all plotted on week 5 to keep the overlap of
symbols to a minimum.  The AC for the VF
seasonal mean (U ) is plotted on week 7 for the
same reason.

The weekly means, somewhat predictably,
start off with high correlation in week one, drop
significantly by week two, and level off to a lower,
but still positive correlation from weeks 3 through
12.  VF atmospheric anomalies show high week
one correlation values usually around 0.6 (0.7 or
greater for temperature).  The fire danger
anomalies also maintain an approximate 0.6
correlation for week one.  In contrast, RF shows a
correlation of 0.6 only for the maximum and
average temperature.  Minimum temperature,
minimum relative humidity and average relative
humidity all have values near 0.5, with maximum
relative humidity, precipitation amount and
precipitation duration all closer to 0.4.  Wind speed
and the fire danger anomalies show the lowest RF
correlation with values of 0.2 or less.  Beyond
week 3, both RF and VF level out at about the
same correlation value for all variables (typically
between 0.1 and zero, although the precipitation
indices level out closer to 0.15).  The weekly mean
for RV (A) is usually below the VF and above the
RF week one correlations.

In most cases the RF (S ) and VF (r )
monthly means could probably be approximated
by the week 2, week 6 and week 10 weekly
means, although month 3 correlations tend to fall
below these values.  The RV (s ) monthly
correlation is typically much higher than the other
monthly means, and just below the VF weekly
correlation.

RF (square) and VF (U) correlations for the
seasonal forecast means tend to be lower than the
week one means, on the order of about 0.2,
although the RF seasonal correlations for
minimum temperature and wind speed are less
than 0.1.  The VF seasonal mean correlations are
consistently higher than the corresponding RF
correlations (by about 0.5), especially for the fire
danger anomalies, but with the exception of the
relative humidity anomalies.  For the fire danger
anomalies, the VF seasonal mean correlations are
higher compared to the VF atmospheric means



(approaching 0.4) while the RF correlations drop
to 0.1 or 0.15.  RV seasonal mean (o) correlations
are very high for the atmospheric anomalies, but
drop to the level of the RF seasonal mean
correlations for the fire danger anomalies.

The RF anomaly correlations of seasonal
means are shown in Figures 4 through 7.  For the
atmospheric elements, the year-round seasonal
means (Figure 4) generally have lower peak
correlations compared to summer means (Figure
5).  The relative humidity anomalies seem to have
the highest correlation in the Southwest (large
parts of Arizona, Nevada and California)
regardless of the season.  The lowest RH
correlation occurs in Wyoming, Colorado, and
New Mexico.  Temperature anomalies have the
strongest correlations in the Southwest for the
year as a whole, although the minimum
temperature correlation is highest only in Arizona
and parts of Washington.  Maximum temperature
also has a high correlation in the Southwest
(Arizona and California).  New Mexico always has
poor temperature anomaly correlations.

Precipitation indices have their highest correlation
in the Southwest (California and Nevada),
including summer.  Precipitation correlation is
generally poor in Washington, Wyoming,
Colorado, and New Mexico.  Wind speed has the
lowest correlation of all of the atmospheric
elements, with virtually no strong correlation over
the full year.  The correlations of wind speed are
best for Washington, Oregon, Colorado and New
Mexico during the summer.

Throughout the year (Figure 6) and in
summer (Figure 7) the fire danger anomalies have
their highest correlation in Nevada and California.
Additionally, the BI, IC and SC also have an area
of higher correlation in southeastern Montana
during the summer and year-round.  All four
indices perform well in Southern California and
Arizona.  It is interesting to note that while the
highest correlations do not necessarily occur
where the highest standard deviation does, they
do seem to have higher correlations in areas
where the correlations for the relative humidity and
precipitation indices are high.



Figure 2  RF weekly (red line), monthly (S), seasonal (square), VF weekly (green line), monthly (r),
seasonal (U), and RV weekly (A), monthly (s), and seasonal (o) anomaly correlations.  Monthly and
seasonal values are plotted at the center points (i.e. week 2 for month 1, week 6 for RF seasonal, week 5
for RV values and week 7 for VF seasonal).  Atmospheric elements are (a) Max T; (b) Min T; (c) Ave T;
(d) Max RH; (e) Min RH; (f) Ave RH; (g) Precip Amt; (h) Precip Dur; (i) Wind Spd.



Figure 3  RF weekly (red line), monthly (S), seasonal (square), VF weekly (green line), monthly (r),
seasonal (U), and RV weekly (A), monthly (s), and seasonal (o) anomaly correlations.  Monthly and
seasonal values are plotted at the center points (i.e. week 2 for month 1, week 6 for RF seasonal, week 5
for RV values and week 7 for VF seasonal).  Fire danger indices are (a) BI; (b) ERC; (c) IC; (d) SC.



Figure 4  RF seasonal mean correlations for (a) Max T; (b) Min T; (c) Ave T; (d) Max RH; (e) Min RH; (f)
Ave RH; (g) Precip Amt; (h) Precip Dur; (i) Wind Spd.



Figure 5  RF summer (JJA) season mean correlations for (a) Max T; (b) Min T; (c) Ave T; (d) Max RH; (e)
Min RH; (f) Ave RH; (g) Precip Amt; (h) Precip Dur; (i) Wind Spd.



Figure 6  RF seasonal mean correlations for (a) BI; (b) ERC; (c) IC; (d) SC.

Figure 7  RF summer (JJA) season mean correlations for (a) BI; (b) ERC; (c) IC; (d) SC.



5. DISCUSSION AND CONCLUSION

The goal of this study was to test the skill of a
dynamical forecast model producing seasonal
forecasts of weather elements and fire danger
rating indices that are important to fire
management.  Since fire danger indices rely
largely on weather elements that have
predictability to varying skill depending on the time
scale, it seems that fire danger indices should also
have a corresponding level of skill.  In an effort to
make these forecasts more useful in application to
land managers, a set of observations from RAWS
were used to determine model skill from the period
September 1997 through December 31, 2002.

All biases, both atmospheric element and fire
danger index, between the RAWS observations
and RSM forecasts and validations have a greater
magnitude than the biases between the elements
of the RSM forecasts and RSM validations.
Overall, the relative humidity biases are the
largest.  For the nine atmospheric elements
assessed, this is likely due, at lease in part, to
differences between RAWS observations and the
NCEP data used to create the validation files.
RAWS are generally located in forest, wilderness
and rangeland areas while atmospheric soundings
and surface data incorporated into the NCEP
analysis grids are usually gathered from locations
unrepresentative of where wildfire occurs.
Additional sources of bias may stem from the fact
that the RSM validations (which are 1-day
forecasts) are themselves only close
approximations of the NCEP data (Roads 2003;
Roads et al. 2003a; b), and that the RSM surface
grid is interpolated to RAWS sites for this study.
Using a more advanced interpolation algorithm,
reducing output grid size or increasing the number
of RAWS in the study could reduce bias due to
interpolation.  Bias in the fire danger indices may
also be due to differences between RAWS and
ECPC site descriptions (fuel model, slope) that are
used in the NFDRS equations.  The ECPC fire
danger indices are calculated on 100 km fuel
model and slope grids, and then interpolated to 60
km grids for comparison to the atmospheric RSM
indices.  The fire danger indices calculated from
RAWS observations are based on the WIMS
descriptions of each RAWS site, not grids.
Additional bias comes, of course, from consistent
errors within the model itself.

Bias can interfere with measures of forecast
accuracy that are based on a direct comparison of
forecast and observational values such as the
root-mean square error.  In order to minimize the
bias between the RAWS observations and RSM

output, correlations between datasets are
computed using anomalies (deviations from
climatology) rather than the original forecast or
observational values.  At a weekly time scale, the
RAWS overall daily maximum and average
temperature indices are shown to correlate with
the validating observations (RV) with a value of
0.7.  The remaining temperature, relative humidity
and precipitation elements have correlations
closer to 0.5, with wind speed correlations closer
to 0.4.  Correlations between RAWS observations
and the RSM forecasts (RF) at week 1 are not
quite as high, with 0.6 for the maximum and
average temperature elements, 0.5 for minimum
temperature, and minimum and average relative
humidity, 0.4 for maximum relative humidity and
the precipitation elements, and 0.25 for wind
speed.  In all instances, the RSM validation versus
RSM forecast (VF) atmospheric correlations are
greater than the other two comparisons and
greater than 0.6.  Month 1 and seasonal
correlations for the RF and VF comparisons drop
to values close 0.2 for most atmospheric indices,
excluding minimum temperature in which both RF
and VF correlations drop below 0.1 and wind
speed in which the RF correlation is closer to 0.05.
The RV monthly and seasonal correlations remain
comparable to the weekly correlations for
maximum, minimum and average temperature,
and typically drop by no more that 0.15 for the
other elements.

Both the RF and RV BI and IC indices have
small correlations with RAWS observations, even
in the first week (close to 0.2).  ERC and SC
correlate even lower at 0.15 and almost 0.12
respectively.  In contrast, the overall VF week 1
correlations are 0.6 or higher for all four indices.
RF and RV seasonal forecasts are comparable
with the week 1 correlation for SC; lower by 0.1 for
BI and IC and 0.05 for ERC.  In contrast, the VF
correlations are greater for all fire danger indices
at week one with a value of 0.6 and seasonally
with a value of 0.25 or 0.3.

While it is clear that the RF seasonal (and
some of the week one) correlations do not reach
0.6, this does not necessarily mean that the
forecasts are absent of skill entirely.  In most
cases (except for wind speed and minimum
temperature), the RF seasonal correlations in the
atmospheric and fire danger indices are still higher
than the weekly means after week 3.  This
indicates that there is skill in the seasonal
forecasts of these elements.

For modelers, these results are additional
encouragement that fire danger indices can be
skillfully forecast by this RSM at seasonal time



scales, even if the current skill is not high.  These
results also serve as a useful contrast of RSM skill
when compared to RAWS observations rather
than the validating observations.  The skill when
compared to RAWS is much lower than when
compared to validation, especially for the
precipitation, wind speed and fire danger indices.
However, even indices with lower overall
correlation may have high correlation in specific
locations, especially during a given season.  For
instance, seasonal wind speed correlates with
values at or above 0.6 in parts of Washington,
Oregon, New Mexico and Colorado during the
summer.  The results for the RSM forecasts
versus RSM validation comparison are
comparable to studies performed at ECPC for the
fire danger indices (Roads et al. 2003b).  The VF
precipitation correlations in this study are slightly
higher than the correlations found in a similar
study at ECPC (Roads 2003).

The RSM model output can be useful for land
managers and fire weather meteorologists.  The
one-week forecasts of the atmospheric indices,
especially temperature, show significant skill and
could likely be incorporated into short-range fire
weather forecasts.  Seasonal forecasts of
atmospheric indices and fire danger ratings show
low skill as an overall average, but can have much
higher skill in specific regions and during specific
seasons.  For instance, the spatial analysis
indicated higher correlations of seasonal forecasts
in all indices for southern California, Arizona and
Nevada.

5.1 SPECIFIC RECOMMENDATIONS

Modelers:
• Re-evaluate the algorithm used to output

fire danger indices, focusing on elements
like fuel moisture and carry-over values.

• Incorporating RAWS into the initialization
of the model (perhaps even as part of the
NCEP/NCAR operational analysis or
reanalysis), would likely aid in the
upgrading model skill with reference to
RAWS.

Fire Managers:
• The skill of most of the week-one

forecasts of atmospheric indices
(especially temperature) is very high.
These values should be useful in making
short-term management decisions.

• While seasonal skill as an overall
average is low, especially for the fire

danger forecasts, most indices still show
some potentially useful regional skill.

Future work on this topic might include a more
in-depth examination of the large biases and low
overall correlation between the RAWS
observations and the ECPC forecasts.  Also,
performing a similar study between the ECPC
GSM forecasts and RAWS observations would be
helpful.  Generating fire danger indices locally
from ECPC forecasts of weather elements and
comparing them to the fire danger indices output
by ECPC would be beneficial.  Upgrading the
GSM and RSM to the latest incarnations of each
would hopefully improve the forecasts of
precipitation and wind speed; with possible
increases in fire danger forecast skill as a result.  It
may also be of additional benefit to fire
management to examine the potential of this RSM
to forecast for specific RAWS.
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