
8.1 AN OPTIMIZED IMPLEMENTATION OF OBJECTIVE ANALYSIS

Thomas A. Cannon*
J. Michael Wolfinbarger, Justin R. Greenfield, Thomas B. Stanley, and William G. McPherson, Jr.

Oklahoma Climatological Survey
University of Oklahoma

Norman, OK 73019

 1. INTRODUCTION

Objective analysis is the process of
interpolating data. In weather visualization software like
WeatherScope (Wolfinbarger et al. 2001), a common
use is to interpolate data from an irregular map of data
gathering stations to a regular grid for the purpose of
drawing products such as temperature gradients.
Figure 1 shows the locations of Oklahoma Mesonet
stations as large red dots, and an arbitrary grid of
plotting points as small blue dots. The task for objective
analysis is to determine the relative data value of each
grid point by interpolating the values measured by the
stations within the grid point’s radius of influence.

Figure 1

 The nature of objective analysis suggests an
obvious but inefficient way to implement it in a program.
As a result, when plotting large datasets such as those
from the National Weather Service, the user experience
is detrimentally affected as the user waits for the
objective analysis to complete. In truly interactive
software such as WeatherScope this effect is
problematic, as the objective analysis must be
recalculated every time the user changes a variable or a
new dataset is downloaded in response to the current
time.

The purpose of this paper is to describe the
steps taken to optimize WeatherScope’s implementation
of objective analysis by reducing the workload by two
orders of magnitude, with a correlating reduction in time
expended.

 * Corresponding author address: Thomas A. Cannon,
Oklahoma Climatological Survey, 100 E Boyd Street,
Suite 1210, Norman, OK 73019-1012; e-mail:
tom@mesonet.org

2. THE “BRUTE FORCE” METHOD

Given an arbitrary grid point and its radius of
influence, an arbitrary station can be tested for inclusion
by calculating the distance from the grid point to the
station and comparing this distance to the radius of
influence (see Figure 2).

Figure 2

The natural solution is therefore to loop
through the grid points and for each grid point loop
through the stations to test them for inclusion:

for each Grid.Y
 for each Grid.X
 loop stations, testing distance
 next Grid.X
next Grid.Y

Unfortunately, this nested loop causes the workload to
increase geometrically with the addition of a single
station or grid point.

In Figure 2, the grid is 17 points high by 35
points wide, yielding a total of 595 grid points. If the
Mesonet has 100 stations reporting data for a given
time, the entire interpolation process will require 59,500
distance calculations, and the addition of a single station
will cause that figure to rise to 60,095. On modern
computers, a few hundred calculations more or less is
an insignificant cost, so there is little incentive to
improve the implementation.

This would be acceptable if all of the
calculations were actually necessary. However, it
should be obvious that data collected in New York City
has little to do with the value of a grid point in Los
Angeles. Figure 2 demonstrates this as well, in that a
station in the panhandle should not affect a grid point in
the center of Oklahoma. While this is obvious to the
human observer looking at a map, it is not obvious to
the computer, which is why the distance calculations are
used. The inclusion test was discovered to succeed

less than 1% of the time, meaning that 99% of these
calculations were wasted effort.

With modern personal computers, this level of
performance is acceptable on state-level data, but
national-level data is intolerably slow to analyze on all
but the latest models using this method. The number of
stations grows into the thousands, and the height and
width of the grid into the hundreds of points. All of this
is multiplied together, and the wasted workload
becomes a serious problem.

The approach taken to solving this problem
was to essentially draw a bounding square around the
circle described by a grid point’s radius of influence.
The square was then used to cull the list of stations so
that only the ones most likely to affect the grid point
(those inside the square) were tested for inclusion in the
radius of influence.

Given a circle of radius R, and bounding
square whose sides are 2R long, the circle’s area will be
78.5% of the square’s area. Assuming random
distribution of stations, it is highly unlikely that
optimization using this bounding box approach will
eliminate all 99% of the wasted calculations. However
for this approach to be considered successful, the
inclusion test should approach a 78.5% success rate.

3. THE BAND SORT

To begin the process of building a bounding
box, the stations were sorted in order of their Y
coordinates and stored in an ordered list. The program
then loops through the grid points by their X and Y
coordinates, simultaneously iterating through the station
list to produce a subset of all the stations that is limited
by vertical proximity to the current grid point:

sort stationlist
iHigh = stationlist.begin
iLow = stationlist.begin

for each Grid.Y
 yHigh = Grid.Y + radius
 yLow = Grid.Y - radius

 while iHigh < yHigh, iHigh++
 while iLow < yLow, iLow++

 for each Grid.X
 loop Station = from iLow to iHigh
 test Station
 end loop
 next Grid.X
next Grid.Y

Figure 3

By eliminating a majority of the stations that
would ordinarily be used in unnecessary distance
calculations on a given grid point, this method produced
workload savings of one order of magnitude. A small
fraction of this savings is spent sorting the stations
beforehand, but the use of an efficient sorting algorithm
makes this cost negligible. The inclusion test was
successful 7% of the time.

4. BAND SORT WITH LIMIT TEST

In an attempt to further reduce the number of
stations being used in distance calculations with a given
grid point, stations in the band were further tested
according to their X coordinates. If the station’s X
coordinate fell outside the grid point’s X coordinate plus
or minus the radius of influence, the station was not
included in distance calculations:

sort stationlist
iHigh = stationlist.begin
iLow = stationlist.begin

for each Grid.Y
 yHigh = Grid.Y + radius
 yLow = Grid.Y - radius

 while iHigh < yHigh, iHigh++
 while iLow < yLow, iLow++

 for each Grid.X
 xHigh = Grid.X + radius
 xLow = Grid.X - radius

 loop Station = from iLow to iHigh
 if xLow < Station.X < xHigh then
 test Station
 end loop
 next Grid.X
next Grid.Y

Figure 4

The inclusion test reached a 77% success rate
at this point, in accordance with the expectations
outlined above. While this method did further reduce
the workload by another order of magnitude, time
expenditure was not significantly reduced because
distance calculations were replaced by comparisons.
Comparing two floating-point numbers is only slightly
faster than multiplying them, so timesavings are
negligible.

5. OPTIMAL BAND WITH LIMIT TEST

To reduce the number of comparisons being
made, the initial band sort was made in the longer of the
X and Y dimensions of the map. Assuming a random
distribution of stations, a map wider than it is tall should
produce fewer stations per band if the stations are
sorted by X-coordinates instead of Y-coordinates. This
will in turn reduce the number of comparisons being
done, and the time expended so doing. The code looks
the same as in the Band Sort with Limit Test, except X
and Y are swapped.

Figure 5

This change produced some savings in
workload and time, though the effect is roughly
proportional to the disparity between the map’s two
dimensions. Testing showed that this disparity is
usually not great enough to make the savings
exceptional.

6. DOUBLE-SORTED BAND

Finally, the stations were sorted twice. The
first sort was in the more optimal direction as with the
Optimal Band technique. Each band is then treated as
a map unto itself, and sorted in its most optimal
direction, which is the unsorted one:

sort stationlist on Station.X
iHigh = stationlist.begin
iLow = stationlist.begin

for each Grid.X
 xHigh = Grid.X + radius
 xLow = Grid.X - radius

 while iHigh < xHigh, iHigh++
 while iLow < xLow, iLow++

 Band = Set(iLow to iHigh)
 sort Band on Station.Y

 bHigh = Band.begin
 bLow = Band.end

 for each Grid.Y
 yHigh = Grid.Y + radius
 yLow = Grid.Y - radius

 while bHigh < yHigh, bHigh++
 while bLow < yLow, bLow++

 loop Station = from bLow to bHigh
 test Station
 end loop
 next Grid.Y
next Grid.X

Figure 6

By iterating through the bands as with the
Band Sort, then iterating within each band along the
other axis, the number of comparisons was minimized
along with the number of distance calculations, yielding
a second order of magnitude in timesavings.

8. CONCLUSION

The elimination of unnecessary work was the
primary force behind the significant timesavings in
performing objective analysis. As the workload became
more efficient, time spent doing the work dropped
dramatically.

The implications of this improvement in
objective analysis implementation are significant to the
development of interactive software such as
WeatherScope. It was previously unthinkable to do
multiple pass analysis on national datasets, or to load
multiple gridded datasets for simultaneous viewing,
since even a single pass on a single dataset was
detrimental to the user experience in interactive
software. With this optimization, even users of relatively
slow or outdated computers can easily make use of
national data.

9. ACKNOWLEDGEMENTS

WeatherScope is a registered trademark of the
Oklahoma Climatological Survey. The software
described in this paper is Copyright 2003, Oklahoma
Climatological Survey, All Rights Reserved. It is freely
distributed for non-commercial use and may be

downloaded via the Internet at http://sdg.ocs.ou.edu.
The development and deployment of WeatherScope
was funded by several projects within OCS, including
the Mesonet, OK-FIRST, and ARM Educational
Outreach projects.

The optimization technique described in this
paper may be used in any software that may benefit
from it, so long as proper credit is given to the
Oklahoma Climatological Survey for having developed
it.

Renee McPherson and Ken Crawford provided
much support, assistance, and encouragement. At
OCS, they foster an environment where creativity can
be exercised and new ideas explored.

10. REFERENCES

Wolfinbarger, J. M., J. R. Greenfield, T. B. Stanley, and
R. A. Young, 2001: WeatherScope: Interactive
Software for Visualizing Web-Based
Meteorological Data Sets. 17th International
Conference on IIPS, Amer. Meteor. Soc.

APPENDIX A

Table 1 is a sample of the results from one of a
series of tests performed at various stages of
optimization. The tests were performed using air
temperature observations from the ASOS network,
selected from random dates and times. Various
computers were tested, and while workload reductions
were consistent, time saved for each computer was
necessarily dependent on processor speed and
available resources.

In this instance, the computer being tested was
a Dell Inspiron 8100 with a Pentium III processor and
512MB of RAM. The network reported data from 1,411
stations, and the grid was 158 points high by 148 wide.

Table 1
T

es
ts

 p
er

P
o

in
t 0.

0

0.
0

15
1.

0

14
1.

9

15
.7

T
es

ts

0 0

3,
53

1,
93

2

3,
31

9,
04

8

36
6,

15
1

C
al

cu
la

ti
o

n
s

p
er

 P
o

in
t

14
11

.0

15
1.

0

15
.2

15
.2

15
.2

In
cl

u
si

o
n

R
at

e 0.
8%

7.
8%

77
.6

%

77
.6

%

77
.6

%

In
cl

u
si

o
n

H
it

s

27
5,

94
9

27
5,

94
9

27
5,

94
9

27
5,

94
9

27
5,

94
9

D
is

ta
n

ce
C

al
cu

la
ti

o
n

s

32
,9

94
,8

24

3,
53

1,
93

2

35
5,

34
8

35
5,

34
8

35
5,

34
8

S
ec

o
n

d
s 17

.5
71

1.
18

4

1.
05

7

1.
04

5

0.
38

1

M
et

h
o

d

B
ru

te
 F

or
ce

B
an

d
S

or
t

Li
m

it
T

es
t

O
pt

im
al

 B
an

d

D
ou

bl
e

S
or

t

