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 1. INTRODUCTION 
 

In her recent review of the economics of 
prescribed burning, Hesseln (2000) posed the 
problem of “a lack of economic models to evaluate 
short- and long-term ecological benefits of prescribed 
fire.  Without understanding the relationship between 
economic outcomes and ecological effects, it will be 
difficult to make effective investment decisions.  
Research should focus on defining a production 
function to identify long-term relationships between 
prescribed burning and ecological effects.  Identifying 
production functions relationships will form the basis 
for future cost-benefit analysis with respect to 
prescribed burning …” (Hesseln 2000, p. 331-332).  
Following Hesseln suggestions, in this study we 
estimate production relationships between prescribed 
burning and deer harvest by using time-series data 
and geographic information system (GIS) 
approaches.  Previous work has shown that deer 
population increases because the quality of forage 
improves after their habitat is burned (Klinger and 
others 1989).  The deer habitat production models 
developed were then used to predict the resulting 
increases in deer harvest from prescribed burning, 
and subsequently to measure the economic benefits 
of this environmental improvement (increase in deer 
harvests) using nonmarket valuation techniques.  

The San Jacinto Ranger District (SJRD) is 
located in southern California’s San Bernardino 
National Forest between Palm Springs and Idyllwild.  
As noted by the USDA Forest Service:  “Some of the 
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best deer hunting in Riverside County is found in this area.  
[The area] it is also a very valuable watershed that 
includes the South Fork of the San Jacinto River” (Gibbs 
and others 1995, p. 6).  The SJRD is an ideal area in 
which to demonstrate and compare different approaches 
to estimating a production function between prescribed 
burning and deer harvest, because prescribed fire has 
been used for more than 20 years to stem the long-term 
decline in deer populations since the 1970s (Gibbs and 
others 1995, Paulek 1989).  The USDA Forest Service has 
a detailed database of fire history for this area predating 
the 1970s.  The California Department of Fish and Game 
(CDFG) have hunter deer harvest records for the SJRD 
dating back to 1974. These two agencies provide the 
fundamental data sets for modeling a relationship between 
deer harvest and fire, whether prescribed burns or 
wildfires.  Information from our analysis may be relevant to 
policy because the SJRD plans to increase the amount of 
prescribed burning by 50 to 100 percent over the next few 
years (Gibbs and others 1995, Walker 2001).  

The positive effect of prescribed fire on enhancing 
deer habitat and populations has been shown (CDFG 
1998, Klinger and others 1989), but the resulting economic 
benefits of the treatments have not been quantified.  We 
hypothesized that prescribed burning has a systematic 
positive effect on deer harvest, and we will use two 
nonmarket valuation methods to estimate the economic 
value of additional deer harvest. 

 
2. STUDY AREA 

 
In general, southern California is characterized by a 

Mediterranean climate, with hot and dry summers and 
cool, humid winters.  There is a significant amount of 
variation in temperatures and local site conditions in the 
SJRD. Below 5,000 feet elevation, the dominant 
vegetation within the SJRD is chaparral. Annual rainfall for 
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the chaparral biome is approximately 15 to 16 inches.  
Areas higher than 5,000 feet tend to be dominated by 
hardwoods and conifers, such as live oak and 
Douglas-fir, with annual rainfall reaching up to 30 
inches.  

The SJRD is an area that evolved with fire as a 
natural environmental factor.  Declining abundance of 
successional vegetation communities is considered to 
have the greatest long-term effects on deer 
populations (CDFG 1998).  Historically, fire, either 
prescribed or natural, has been the primary 
mechanism for establishing these vegetation 
communities.  Studies in California have noted that 
after a burn, increased deer numbers can be 
attributed to individuals moving into the area to feed 
(Klinger and others 1989).  It is hypothesized that 
increases in quality of forage and fawn survival have 
improved reproduction, leading to increased numbers 
of deer.  The CDFG noted a significant increase in 
buck harvest from 1987 to 1996 in hunt locations that 
had large fires versus hunt locations that did not have 
large fires (CDFG 1998).  To improve deer habitat in 
California, controlled burns have been underway in all 
major parks and forests for many years (Kie 1984).  
Efforts including controlled burning to remove brush 
have been part of a program to create desirable deer 
habitat (i.e., chaparral in the open scrubland) and to 
mitigate the loss of deer habitat resulting from 
commercial and residential development. 
 
3. TWO APPROACHES TO MODELING 

PRODUCTION FUNCTIONS  
 

To test whether prescribed burning has a 
systematic effect on deer harvest we used a macro, 
or aggregate, time-series approach and a micro, 
spatial approach.  To estimate the economic value of 
additional harvest resulting from prescribed burning 
treatments we used two nonmarket valuation 
methods.  By examining prescribed burning effects on 
deer harvest with two different approaches—a macro, 
or aggregate, time-series approach and a micro, 
spatial approach (e.g., GIS)—comparisons can be 
made between the results for consistency between 
these two approaches.  A macro approach would be 
able to test the effects of fire, prescribed and natural, 
across the entire study area over a long period of 
time. Although more aggregate in geographic space, 
data availability allows us to test dynamic effects over 
longer time frames.  Using a micro approach provides 
greater spatial detail to elements such as the 
influence of a meadow or ridge, but a shorter time 
frame is covered because of data limitations.   

 
3.1 Multiple Regression Models for Estimating 

the Production Function 
 

Estimating a production function that relates 
deer harvest to acres of prescribed burning must also 
control for other inputs that influence the production of 
deer for harvest.  This includes wildfire, elevation 
(used as a proxy for vegetation data that was 

incomplete), total precipitation, temperature, and distance 
to roads.  Thus, multiple regression analysis is an 
appropriate technique.  The simplest form used in this 
study is ordinary least squares (OLS) regression.   

Using OLS, it is not possible to take the log of a 
zero-valued observation of the dependent variable; but if 
the negative binomial count data model is used, the 
probability distribution allows for this—similar to a 
nonlinear least squares model that circumvents the need 
for transformations (Hellerstein 1992).  Therefore, these 
features make the Poisson and negative binomial 
distributions useful in our micro GIS-based analysis since 
the variable we are trying to explain—deer harvest in 1 of 
37 sub-hunting location areas—is a non-negative integer.   

However, when modeling the aggregate harvest for 
all of the SJRD, the mean number of deer harvested is 
much larger [than 3] and varies between 80 and 157 deer 
in any given year; therefore, using OLS is an acceptable 
approach for the macro time-series modeling. 
 
4. ECONOMIC EVALUATION 
 

Wildlife such as deer is commonly considered 
nonmarket goods in much of the western United States.  
Although natural resources have use and nonuse values 
(e.g., existence values), the widespread distribution of 
deer suggests that the incremental benefits of more deer 
are use values.  For deer, use values are those associated 
with tangible uses in recreational hunting or viewing 
benefits.  Because of the difficulty in identifying deer 
viewers, this study focuses on deer hunters.  
 
4.1   Approaches to Production Function Modeling  
 

Two primary methods for estimating a deer harvest 
production function were applied in this study.  Both 
methods were looking for a statistical relationship between 
deer harvest and fire, both wildfires and prescribed fires 
that occurred in southern California’s SJRD.  The 
distinguishing difference between the two methods applied 
is the variation in spatial scale.  

The first statistical approach to modeling a 
production function is based on a time-series regression 
model to test for a relationship between deer harvest (the 
dependent variable) and prescribed fire, controlling for 
other independent variables such as annual precipitation 
and temperature during the hunting season (table 1).  This 
approach used a data set for SJRD, provided by the 
CDFG and the USDA Forest Service.  The fire records 
provided data from 1975 to 1996 for wildfire and from 
1979 to 1997 for prescribed burns within the SJRD.  This 
ranger district represents the majority of publicly 
accessible land for deer hunting in Riverside County.  
Deer harvest data from 1975 to 1998 was provided by 
CDFG.   

A time-series model was established with this data 
and weather information from the University of Nevada at 
Reno’s Western Climate Center database that contains 
temperature and precipitation data from the SJRD dating 
back to 1975.  The model attempts to directly explain deer 
harvest within the SJRD as a function of wildfire, 
prescribed fire, temperatures during the October hunting 
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Table 1--Data for modeling a macro time-series production function. 
 
 
Year 
 

 
SJRD-Harvest 

no. deer 

                   Acres  
Prescribed Fire 

Burned 
Wildfires 

 
Oct-Temp 

0F 

Annual 
Precipitation 

inches 
      
1975 105 NA1 5231 70.48 19.94 
1976 145 NA 0 69.23 27.22 
1977 113                  NA  3948 74.32 22.63 
1978 101 NA 2049 74.32 46.99 
1979 148 40.00 1987 70.73 29.62 
1980 139 194.10 3,7627 73.68 45.65 
1981 155 291.90 1,5016 67.00 15.81 
1982 157 228.00 6279 69.42 49.47 
1983 143 3,119.90 7206 69.52 56.87 
1984 120 971.00 13 64.42 16.96 
1985 119 1,311.80 2,1128 67.29 23.58 
1986 162 1,309.00 0 65.19 23.92 
1987 131 181.50 1432 69.58 23.49 
1988 103 1,954.00 1615 75.52 18.25 
1989 128 2,009.60 2121 68.65 15.98 
1990 104 423.00 119 74.19 19.12 
1991 83 0.00 91 72.19 31.49 
1992 117 77.70 1458 70.00 23.44 
1993 93 383.00 269 69.13 43.64 
1994 132 25.40 2,2416 66.68 20.84 
1995 82 975.20 7116 73.84 45.09 
1996 131 822.00 1,2338 68.10 28.36 
1997 126 4.94 NA  69.06 24.96 
1998 99 0.00 NA        NA 28.47 
1NA = not available 
 
season, and total precipitation in a given year (table 
1).  

The full model (equation 1) is given, and then a 
lagged model (equation 2) is included that allows for 
deer harvest to be sensitive to previous years’ 
prescribed fire and wildfire.  In past research, the use 
of burned areas by deer has been shown to increase 
dramatically during the subsequent years (Klinger and 
others 1989).  Therefore, this model takes into 
account these subsequent years by using lagged 
variables.  

The SJRD time-series production function 
model is: 

 
SJRD deer harvest in yeart = func (RxBurnt, (1) 
 WildFiret, TotPrecipt, OctTempt, Yeart),  
           
 
in which RxBurnt is the number of acres of prescribed 
fire in year t, WildFiret is the number of acres of 
wildfire in year t, TotPrecipt is the sum of precipitation 
for year t, OctTempt is the average temperature in 

October during the hunting season, and Yeart is a trend 
variable, with 1975 = 1, 1976 = 2, etc. 

The lagged model of the SJRD time-series 
production function is:  

 
SJRD deer harvest in year t = func (RxBurnt-1,         (2) 

 WildFiret-1, TotPrecipt, OctTempt, Yeart). 
  
Using the log-log form of the production function 
represents the nonlinear forms of equations 1 and 2.  This 
format allows for a nonlinear relationship, and the 
coefficients for fire can be interpreted as elasticities:  the  
percent change in deer harvest with a 1 percent change in 
acres burned.  

The second statistical approach taken in this study 
focused on using a GIS for integrating spatial data into an 
economic relationship.  A similar multiple regression 
approach was used as in the first method, except that the 
study area was divided into 37 individual hunting locations 
reported by hunters.  The primary difference in the two 
models is that the micro GIS approach models deer 
harvest for 37 small hunting locations, whereas the macro 
time-series model uses just one large hunting zone that 
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encompassed the SRJD.  The micro GIS approach 
allowed for the incorporation of other influences on 
deer harvest that varied spatially across individual 
hunting locations such as distance to roads and 
elevation. 

All of the spatial data for this method came 
either from the United States Geological Survey 
(USGS) 1:100,000 digital line graphs (DLG) files or 
from the USDA Forest Service Arc/Info and Arc/View 
files, which were provided by the San Bernardino 
National Forest Supervisor’s Office.  The data for all 
the files use the Universal Transverse Mercator 
(UTM) coordinate system (Zone 11, Datum NAD 27).  
The scale of the data is at 1:250,000.  These spatial 
data files contain information on prescribed fire, 
wildfire, elevation, roads, and trails.  The CDFG maps 
and tally sheets provided the hunting location 
information.  The areas on the CDFG maps were 
aligned with areas on USGS 7.5-minute topographical 
quads. 

All relevant GIS data had to be exported into a 
spreadsheet format and prepared for regression 
analysis.  A count data model was estimated that 
regressed deer harvest per hunting zone against 
prescribed fire and wildfire from 1975 to 1998.  

 The models developed for the harvest areas 
had to account for the non-uniform size of each 
hunting location.  Three approaches were used.  The 
first approach measures a percent of the area burned 
and includes the size of each harvest area as a 
variable (equation 3).  The second approach includes 
just the size and total number of acres of an area 
burned (equation 4).  The third approach transforms 
the dependent variable into deer harvest per acre and 
uses an OLS regression (equation 5).   

The model based on percentage of area burned, 
including lags, is:     
  
Deer harvest in yeart = func (AvgElev, LDirtDist, (3) 

LTrailDist, PctRxBurnt, PctRxBurnt-1, 
PctRxBurnt-2, PctRxBurnt-3, PctWildfiret, 
PctWildfiret-1, PctWildfiret-2, PctWildfiret-3, 
LHvstArea, OctTempt, Yeart),  

 
where all variables are as described in the next 
section.   

The model with harvest as a function of total 
size of fire, including lags, is:   
  
Deer harvest in yeart = func (AvgElev,           (4)  

LtotalWildfiret, LtotalWildfiret-1, LtotalWildfiret-2, 
LtotalWildfiret-3, LtotalRxBurnt, LtotalRxBurnt1, 
LtotalRxBurnt-2, LtotalRxBurnt-3, LDirtDist, 
LTrailDist, LHvstArea, OctTempt, Yeart),  
 

where all variables are as described in the next 
section. 

The model based on deer harvest per acre 
using OLS log-log form is: 

     

Log deer harvest per acre in yeart = func (AvgElev, (5) 
LtotalWildfiret, LtotalWildfiret-1, LtotalWildfiret-2, 
LtotalWildfiret-3, LtotalRxBurnt, LtotalRxBurnt-1,  
LtotalRxBurnt-2, LtotalRxBurnt-3, Ldirtdistance, 
Ltraildistance, LHvstArea, OctTempt, Yeart) 

 
where all variables are as described in the next section.   
 
5. ESTIMATED PRODUCTION FUNCTIONS 
 
5.1 Macro Time-Series for San Jacinto Ranger 

District Equations 

The basic model between deer harvest in SJRD and 
both prescribed fire (RxBurn) and wildfire (WildFire) was 
computed (table 2).  Precipitation (TotPrecip), temperature 
(OctTemp), and year (Year), a trend variable, were also 
included in the equation.  In this linear equation there 
appears to be no strong statistical significance between 
the dependent variable and either type of fire.  The 
coefficient on prescribed fire is 0.0009 and has a 0.18 t-
statistic, indicating that this variable has minimal effect on 
deer harvest and is insignificant.  The wildfire variable is 
very similar to the prescribed fire variable: the coefficient is 
0.0004 and the t-statistic is 0.92, both insignificant and 
insubstantial.  The only significant variables are October 
temperature and year.  

October temperature (OctTemp) is negative (-
3.6472) and has a significant t-statistic of   -2.5.  This sign 
is consistent with hunter surveys indicating that when the 
temperature is high, the deer harvest goes down because 
deer are bedded to avoid the heat.  Year has a 2.8 t-
statistic and a negative coefficient of 2.1731.  This would 
indicate that some systematic trend does exist within the 
data set.  Possibly this variable is capturing other 
influences contributing to the decline in deer population 
within the SJRD.  Total precipitation was expected to have 
a strong positive effect on vegetation growth and forage 
availability for deer; however, it does not show up as being 
significant.  The R-squared value for this model is 0.59, 
and adjusted R-squared is 0.43.  These values indicate 
some ability to explain the effects of fire on deer harvest, 
as about half the variation in deer harvest is explained by 
year and October temperature.  At this scale and with 
untransformed variables for deer harvest and fire, there is 
no indication that the fire variables are related to variation 
in deer harvest. 

A model incorporating a 1-year lag on acres burned 
was estimated to determine if the year after a fire allows 
for an increase in deer harvest.  This lag is based on the 
expectation that new vegetation growth occurs in the year 
after a fire. Previous literature found that the number of 
deer occupying burned stands of chaparral quadrupled in 
the first growing season after a burn (Klinger and others 
1989).  However, a 1-year lag did not make a difference in 
deer harvest using this model.  The 1-year lagged value of 
prescribed fire (-0.0047) and wildfire (0.0003) were both 
insignificant, with t-statistics of –0.70 and 0.72, 
respectively.  Values for October temperature and year 
are almost the same as those in the previous model 
without a lag.  The R-squared values for this model were 
similar to the previous model, at 0.58 and 0.42.   
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Table 2--Linear regression model for non-lagged macro time-series for ranger district. 
     
Variable Coefficient Std. error t-Statistic Probability 
     
Constant 4,694.2070 1,535.6420 3.057 0.0092*** 
RxBurn1 0.0009 0.0052 0.185 0.8559 
Wildfire 0.0004 0.0004 0.921 0.3736 
TotPrecip     0.0361 0.3648 0.099 0.9227 
OctTemp -3.6472 1.4501 -2.515 0.0258** 

Year -2.1731 0.7754 -2.803    0.0150** 

     
R-squared 0.588  Mean dependent variable 124.895 
Adjusted R-squared 0.429  S.D. dependent variable 23.758 
S.E. of regression 17.947  F-statistic 2.708 
Durbin-Watson statistic 1.870  Prob. (F-statistic) 0.026 

 
1Prescribed fire **Significant at α = 0.05 ***Significant at α = 0.01 
 
5.2 Log-Log Model for the San Jacinto Ranger 

District  
 

Taking the log of the dependent variable and the 
log of the combined wildfire and prescribed burn 
variable (LnTotFire) results in a statistically significant 
effect.  The coefficient for total fire shows a small 
magnitude of 0.048, but it has a significant t-statistic 
of 2.3 (table 3).  This appears to be in line with a 
previous study where the density of deer increased 
after wildfire (Klinger and others 1989).  The sign on 
this variable is positive, and the coefficient can be 
interpreted as elasticities by using the log-log form. 
Therefore, a 1 percent increase in acres burned will 
lead to a 0.048 percent increase in deer harvest.  The 
other significant variables are October temperature 

(OctTemp) and year (Year).  Again, a negative sign on the 
October temperature coefficient relates to observations 
that an increase in temperature results in a decrease in 
the number of deer harvested.  The year variable indicates 
that a systematic effect exists within the model.  This 
model’s explanatory power is better with an R-squared 
value of 0.68.  The Durbin-Watson statistic of 2.07 
indicates that autocorrelation is not a problem. 

 
 
 
 
 
 

 
Table 3-- Log-log model for macro time-series for ranger district. 
     
Variable Coefficient Std. error t-Statistic    Probability 
     
Constant 41.8087 11.0701 3.7767 0.002*** 

LnTotFire 0.0487 0.0205 2.3719 0.033** 

TotPrecip -0.0001 0.0026 -0.3666 0.719 
OctTemp -0.0270 0.0107 -2.5362 0.024** 

Year -0.0179 0.0056 -3.1993 0.006*** 

     

R-squared 0.677  Mean dependent variable 4.809 
Adj. R-squared 0.585  S.D. dependent variable 0.202 
S.E. of regression 0.130  F-statistic 6.343 
Durbin-Watson statistic 2.066  Prob. (F-statistic) 0.002 
 

**Significant at α = 0.05  ***Significant at α = 0.01 
 
 
 

 
 



Table 4--Count data model based on geographic information system using total acres burned with lags. 
     
Variable Coefficient  Std. Error   t-Statistic   Probability   
     
Constant 62.9643 23.1158 2.7239 0.007*** 
LAvgElev -0.2373 0.1307 -1.8154 0.070* 

LTotWFires 0.0107 0.0171 0.6249 0.532 
LTotWFires (-1) 0.0083 0.0170 0.4877 0.626 
LTotWFires (-2) -0.0277 0.0155 -1.7903 0.073* 

LTotWFires (-3) -0.0247 0.0156 -1.5830 0.113 
LTotRxBurns 0.0441 0.0179 2.4609 0.014** 

LTotRxBurns (-1) 0.0275 0.0270 1.0193 0.308 
LTotRxBurns (-2) 0.0115 0.0222 0.5169 0.605 
LTotRxBurns (-3) 0.0115 0.0187 0.6155 0.538 
LDirtDist -0.2338 0.0377 -6.1944 0.000*** 

LTrailDist 0.3952 0.0418 9.4633 0.000*** 

LFireDist 0.0727 0.0474 1.5335 0.125 
LHuntArea 0.9407 0.0870 10.8128 0.000*** 

OctTemp -0.0121 0.0168 -0.7179 0.473 
Year -0.0347 0.0118 -2.9535 0.003*** 

     
          Overdispersion parameter  
     
Alpha:C(17) -0.281 0.1081 -2.598621 0.009*** 
     
R-squared 0.257  Mean dependent variable 1.759 
Adjusted R-squared 0.242  S.D. dependent variable 2.611 
S.E. of regression 2.273  Avg. log likelihood -1.618 
Restr. log likelihood -1920.633  LR index (Pseudo-R2) 0.305 
 
*Significant at α = 0.10; **Significant at α = 0.05; ***Significant at α = 0.01

 
 

The model in table 3 was also estimated with a 
1-year lag.  The coefficient on the log of total fire 
lagged 1 year was 0.01 and had a t-statistic of 0.44, 
which indicates that the lag is insignificant.  The R-
squared value did not change from the previous 
model.   
 
5.3 Summary of Micro Regressions Based on 

GIS Analysis 
 

Two of the regression models estimated using 
GIS-derived data—count data and OLS—show that 
prescribed burns had a statistically significant effect 
on deer harvest.  The count data model based on 
total fires is used for calculating the marginal benefits 
of additional burning on deer harvest in the next 
section because of its superior explanatory power.  
The low R-squared value (0.18) of a model based on 
percent of hunting location area burned, and an OLS 
Log-Log form of harvest per acre (R-squared = 0.13) 
indicate both equations have relatively low power of 
explaining deer harvest and are not presented here 
(results available from the author). 

 
 
The count data model (table 4) specification uses 

two separate fire variables: the log of total acres of 
prescribed fire in the individual hunting area during the 
time period, and the log of total acres of wildfire in the 
individual hunting area during the time period.  This 
equation controls for the different size of the individual 
hunting areas by including a variable for size (acres) of 
hunting area.  Total acres of prescribed fire (LTotRxBurns) 
are significant during the year of the prescribed fire, but 
their significance declines over the next 3 years.  During 
the first year, the prescribed fire coefficient is 0.044 with a 
t-statistic of 2.4.  Because this count data model uses the 
log of the total acres of wildfire variable, it is equivalent to 
a log-log model.  As such, the 0.044 coefficient represents 
the elasticity.  Total acres of wildfire (LTotWFires) were 
not significant for any of the years in this equation.  This 
model, with an R-squared value of 0.26, has more power 
to explain the effect of fire on deer harvest than the model 
based on percent of hunting location area burned and the 
OLS Log-Log form model of harvest per acre. 
 
 
 



5.4 Applying the Regression Production 
Functions 

 
To calculate the incremental effects of different 

levels of prescribed burning on deer harvest, the 
acres burned variable is increased from one level to a 
higher level in the regression model.  We used the 
double-log macro time-series model (table 3) and the 
micro GIS-based double-log count data models (table 
4), as these two models have the highest explanatory 
power.  The resulting predicted change in deer 
harvest will be valued in dollar terms.  

The double-log macro time-series production 
function model (table 3) is used to estimate the change in 
deer harvest because of its high explanatory power (68%).  
The prescribed burning component of the total fire variable 
in this model is increased to three different levels (1100, 
4810, and 8,510 acres, respectively) and the predicted log 
of deer harvest is calculated at the mean of the other 
variables.  The anti-log of harvest is then calculated to 
provide the estimate of the deer harvest with that level of 
prescribed burning (table 5). 

 
Table 5--Comparison of deer harvest response to prescribed burning using the macro time-series model and 
geographic information system (GIS) micro model. 
 
 Macro time-series model GIS micro model 
 
Total acres1 Additional  No. Deer  Marginal  Prescribed No. Deer Marginal 
burned acres burned harvested increase in  Acres harvested increase in 
    deer harvested burned  deer harvested 
 
 1 NA2 83 NA 1 42 NA 
 1,100 1,100 116 33±3.993 1,100 58 16±4.45 
 4,810 3,710 124 8±3.99 3,710 66 8±4.45 
 8,510 3,700 128 4±3.99 3,700 71 5±4.45 
   
1 Although the variable Total Acres Burned reflects the combined prescribed acres and wildfire acres, for this 
simulation only, the prescribed burn acres are being changed because prescribed burned is the management 
variable. 
2 NA = not applicable 
3 Because the dependent variable is the log of deer harvested, the 95 percent confidence interval was computed 
taking the antilog of the S.E. of the regression (0.13) (table 3) and multiplying it by 1.96 (antilog 0.13 = -2.04 x 1.96 = 
± 3.99).    
 
5.5 Applying Results of Micro GIS Production 

Function Model 
 

The economic implications from prescribed burn 
programs will be evaluated by using the prescribed 
burn coefficients (table 4) in the GIS count data 
model.  By using this model it is possible to calculate 
the additional harvest from additional prescribed burn 
acres.  In table 5, the first row forecasts the estimated 
number of deer that would be harvested if only one 
acre of land would burn.  By using the current mean 
number of acres burned in each individual hunting 
location for the GIS micro model (table 4), 30 acres, 
and then multiplying this by the total number of 
individual hunting locations, 37, a SJRD-wide deer 
harvest level is calculated.  The forecast feature in the 
statistical software package EViews (Quantitative 
Micro Software 1997) does this.  The other variables 
are set at their mean levels.  In the GIS micro model 
the effect of further increasing prescribed burning is 
then calculated by increasing the number of acres 
burned in each hunting location by 100 acres and 
then 200 acres to provide a wide range of prescribed 
burning levels in the SJRD.  The first level (1,100 
acres) is about the average number of acres of 
prescribed burning over the past 20 years in the 
SJRD.  Maintaining this level of prescribed burning 

 
does provide an increase in deer harvest over the no-
burning level.  However, the gain in deer harvest 
increases more slowly with additional increases in burning 
in each hunting area (table 5). 

The results suggest there is a substantial gain in 
deer harvest with the first 1,100 acres burned (table 5), 
especially as calculated from the macro time-series model.  
However, a very similar diminishing marginal effect is 
evident from both the macro time-series production 
function regression and the micro GIS production function 
regression after burning more than 1,100 acres.  In other 
words, regardless of the spatial level of detail adopted, 
burning an additional 3,710 acres is expected to result in 
about eight more harvested deer in the SJRD.  

To determine the economic efficiency of additional 
prescribed burning, it is necessary to compare the benefits 
of additional prescribed burning in the form of the 
economic value of deer harvest against the costs.   

 
6. VALUATION OF DEER HUNTING 
 

In the SJRD the deer hunting regulation allows for a 
1-month hunting season and a one-deer bag limit.  
According to CDFG, deer hunting is considered one of the 
major outdoor recreation activities in SJRD every year.  
Deer hunting offers opportunities for recreational 
enjoyment and produces economic benefits to the town of 
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Idyllwild, California.  Previous research on deer 
hunting in California showed that increased success 
rates and opportunities to harvest a trophy deer 
(Creel and Loomis 1992) increase the economic value 
of deer hunting.  

Linking hunter trips and success to economic 
values will result in a bioeconomic relationship that 
ties fire management decisions to economics.  Thus, 
we estimated the economic value of the additional 
deer harvest resulting from the prescribed burning 
program in the SJRD.  By using both the travel cost 
method (TCM) and the contingent valuation method 
(CVM) we can compare the estimates of the change 
in consumer surplus for harvesting another deer in the 
SJRD.  This economic information will be useful to 
future policy decisions regarding funding and 
implementation of a prescribed burning program.  
 
6.1 Contingent Valuation Method 
 

CVM uses simulated (hypothetical) markets to 
quantify monetary values similar to actual markets 
(Loomis and Walsh 1997).  The method uses survey 
questions to elicit people’s net economic value or 
consumer surplus for an improvement in 
environmental or site quality by asking what additional 
amount they would pay for the specified improvement.  
Thus, the method aims at eliciting people’s 
willingness-to-pay (WTP) in dollar amounts.  In our 
application, CVM presents hunters with a hypothetical 
market in which they can pay higher trip costs to 
receive an increase in deer harvest opportunities.  For 
simplicity in survey design and administration, an 
open-ended WTP question was asked.  In addition, 
the accumulated evidence to date is that the open-
ended format tends to produce conservative WTP 
estimates relative to dichotomous choice (Schulze 
and others 1996).  Although open-ended questions 
are more difficult to answer than dichotomous choice 
questions, hunters who have completed the deer-
hunting season at this area are quite familiar with the 
good they are asked to value (deer).  Therefore, we 
believed that this simplification was acceptable.  The 
basic improvement being valued is the deer hunter’s 
consumer surplus per trip for a guaranteed deer 
harvest during the season, which is the difference 
between people’s maximum WTP per trip with 
guaranteed deer harvest (i.e., 100 percent chance of 
harvesting a deer) and people’s current maximum 
WTP per deer hunting trip (i.e., deer hunting demand 
with around 9 percent deer harvest success rate).  
The CVM model is specified as (equation 6):  
 
MWTPDeer = MaxWTPKill – MaxWTPCur,          (6) 
     
 
in which MWTPDeer is the change in hunter’s WTP 
for increasing deer harvest rate, MaxWTPKil is the 
maximum WTP per trip with certainty of deer harvest, 
and MaxWTPCur is the current maximum WTP per 
trip. 

6.2 Travel Cost Method 
 

The TCM has been a primary indirect approach for 
valuing environmental resources associated with 
recreation activity over the past several decades.  
Clawson (1959) was the first to empirically estimate 
benefits using a travel cost framework.  The basic concept 
of TCM is that travel cost (i.e., transportation cost, travel 
time) to the site is used as the proxy for the price of 
access to the site.  When recreationists are surveyed and 
asked questions about the number of trips they take and 
their travel cost to the site, enough information can be 
generated to estimate a demand curve.  From the demand 
curve, net WTP or consumer surplus can be calculated.  
The explanatory variables that are often included in travel 
cost demand curves include age, income, family size, 
educational level, and other socioeconomic variables 
(Kahn 1995).  Since we are interested in the benefits of 
improvements at just one site with no changes at other 
sites, a single site TCM demand model will suffice for 
empirical analyses, and more complex multi-site models 
such as hedonic TCM (hybrid hedonic travel cost method 
developed by Brown and Mendelsohn [1984]) or 
multinomial logit models (sometimes called Random Utility 
Models [RUMs]) are more costly and complex than 
warranted.  

 
6.3 Definitions of TCM Price Variable 
 

Besides the travel cost variable or its proxy, travel 
distance, many articles discuss the inclusion of a travel 
time variable in the demand function.  Knetsch (1963) was 
the first to point out that the opportunity cost of time is part 
of travel costs as well.  Cesario (1976) suggested one-
fourth the wage rate as an appropriate estimate of the 
opportunity cost of time based on commuting studies.  For 
individuals with fixed workweeks, recreation takes place 
on weekends or during pre-designated annual vacation 
and cannot be traded for leisure at the margin.  In such 
cases, Bockstael and others (1987), Shaw (1992) and 
Shaw and Feather (1999) suggest that the opportunity 
cost of time no longer need be related to the wage rate.  
These studies suggest that both travel cost and travel time 
be included as separate variables, along with their 
respective constraints—income and total time available for 
recreation.  

This study chooses its variables according to the 
consumer demand theory and past literature (table 6).  For 
instance, private hunting land serves as a substitute (or 
complement) for public hunting land in SJRD.  Hunters 
were asked neither the distance to substitute sites nor the 
name of a substitute site for the SJRD deer hunting.  
Because there are two other deer hunting areas in 
southern California that could be substitutes, our TCM 
estimates of consumer surplus may overstate the hunter’s 
net WTP for the SJRD by a slight amount.  Hunters who 
hunt on opening day, belong to hunting organizations, 
hunted in previous seasons, and had a successful deer 
harvest may take potentially more hunting trips because 
such hunters have higher preferences, experience, or skill 
in deer hunting recreation.  Because a majority of hunters 
in our data set work a fixed workweek, we assume that the 
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deer hunter maximizes utility level subject to their 
income and time constraints (Shaw 1992).  In other 
words, time is a constraint like income for time-
intensive activities like hunting.  Total time budget is 
constructed for the TCM model according to the 
demographic time information.  For example, for 
persons who took a paid vacation to hunt, their total 
time budget (days) is obtained by adding 8 weekend 
days during the month of the hunting season to the 
number of weeks of paid vacation of the individual 
multiplied by 5 days per week, for up to a maximum 

total of 30 days (31 days in October), which is the length 
of the hunting season.  For persons who took unpaid 
vacation time or reduced work hours to hunt, their total 
time budget is 16 days.  For those who work their usual 
amount and hunt when they can, their total time budget is 
8 days, the number of weekend days during the October 
hunting season.  Furthermore, the total time budget for the 
unemployed and retirees is 31 days.  In this study, the 
total time budget ranges from 8 to 31 days, since the deer-
hunting season in SJRD lasted for 1 month only. 

 
 
Table 6--Variables included in regression models and their definitions. 
 

Variable Definition 
 

Dependent:  
NUMTRIPS 

 
Number of deer hunting trips (primary purpose) taken to the 
SJRD during 1999 deer-hunting season. 

Independent:   
Age Hunter’s age (years) 
DeerKill Did you harvest a deer in this area during this hunting season? 

1= YES, 0 = NO 
HuntOpen Did you hunt on opening day of the D-19 season? 

1= YES, 0 = NO 
HuntOrg Are you a member of a Sportsman’s organization? 

1= YES, 0 = NO 
PrevSeas Have you hunted in this area in a previous season?  

1= YES, 0 = NO 
PrivLand Did you hunt on private land?  

1= YES, 0 = NO 
RTravMiles Round-trip travel miles from home to the hunt location 
PcInc Hunter income (household) 
ToTimeBud Total time budget (days)  
TravTime One-way travel time (hours)  

 
 
 
6.4 Count Data Nature of TCM Dependent 

Variable 
 

The non-negative integer characteristic in every 
observation for the dependent variable (i.e., 
NUMTRIPS) is the so-called “count data.”  Given the 
count data form of the dependent variable, a preferred 
estimation model should be able to control for the 
integer nature of the dependent variable (Creel and 
Loomis 1990).  In this study, the negative binomial 
count data model was used to estimate the demand 
function.  The negative binomial is the more 
generalized form of the Poisson distribution, which 
allows the mean number of trips to be different from 
its variance.  The negative binomial and Poisson 
count data models are equivalent to a semi-log of the 
dependent variable functional form. 

The count data TCM model is specified in 
equation 7: 

 
 
 
NUMTRIPS = EXP (C(1) + C(2) x Age +     (7) 

C(3 x DeerKill + C(4) x HuntOpen + C(5) x HuntOrg 
+ C(6) x PrevSeas + C(7) x PrivLand - C(8) x 
RTravMiles + C(9) x PcInc + C(10 x ToTimeBud - 
C(11)  x TravTime) 

 
In equation 7, we expected the coefficient for 

DeerKill [C(3)] to have a positive sign, since hunters would 
likely have taken more hunting trips if the hunting quality 
had been good.  Also, if hunters hunted on the opening 
day [C(4)], on private land [C(7)], or during previous 
seasons [C(6)] and belonged to hunting organizations 
[C(5)], then we expected a positive effect on the number of 
trips the hunter took, as these variables indicated a strong 
preference for deer hunting.  For those hunters with a 
higher income level [C(9)] or higher total time budget 
[C(10)], or both, we expected more hunting trips as well, 
as a result of less binding income and time constraints.  
However, round-trip travel distance [C(8)] and travel time 
[C(11)] are expected to have negative effects on the 
number of hunting trips because increases in these two 
variables increase the hunter’s expense. 
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6.5 Calculation of Consumer Surplus in TCM  
 

The consumer surplus from deer hunting is 
computed from the demand curve as the difference 
between people’s WTP (e.g., the entire area under 
the demand curve) and what they actually pay (e.g., 
their travel costs).  Because the count data model is 
equivalent to a semi-log functional form, consumer 
surplus from a trip is calculated as the reciprocal of 
the coefficient on round-trip travel miles times the 
average cost per mile, expressed in RtravMiles * 
$0.30/mile (see equation 9) (Sorg and others 1985).  
 
6.6 CVM and TCM Comparisons 
 

Literature in CVM and TCM comparisons has 
usually just compared the average consumer surplus 
for existing conditions.  For example, Carson and 
others (1996) found in their study that on average, 
CVM-derived values were usually smaller than 
revealed preference estimates like TCM.  To test the 
consistency between two valuation methods for 
nonmarket good, we compared the CVM and TCM in 
this study for the improvement in deer hunting quality 
due to the prescribed burning program.  A Tobit 
model was used for the analysis of open-ended WTP 
responses from CVM because our open-ended 
dependent variable has only a single bound at 0.  The 
Tobit model uses the open-ended WTP response as 
the dependent variable in CVM (i.e., people’s current 
WTP), and the independent variables similar to TCM.  
The same variables are used because both methods 
are trying to explain consumer surplus.  For TCM, this 
is done via the demand curve.  Meanwhile, for CVM, it 
may be thought of as the inverse demand function.  

The CVM Tobit model is equation 8:  
 
MaxWTPCur = C(1) + C(2) x Age + C(3) x DeerKill (8)           

+ C(4) x HuntOpen + C(5) x HuntOrg + C(6) x 

PrevSeas + C(7 )x PrivLand - C(8 )x RTravMiles + 
C(9) x PcInc + C(10) x ToTimeBud - C(11) x  
TravTime 

 
For the same reasons as in the TCM equation, we 

expected round-trip travel miles and travel time to hold 
negative signs in equation 8.  
 
6.7 Data for TCM and CVM Models 

 
For cost effectiveness in data collection, a mail 

questionnaire was used.  Hunters were asked about their 
expenses as well as their willingness-to-pay higher trip 
costs for the hunting experience on the most recent trip.  
Specifically, they were asked an open-ended question 
pertaining to the maximum increase in deer hunting 
expenses that would have deterred them from taking this 
trip.  Also, the CVM analysis was used to measure hunter 
increases in WTP associated with increasing deer harvest 
success, including a 100 percent chance of harvesting a 
deer during the season.  Our WTP estimate from CVM is 
compensating variation, rather than consumer surplus, but 
the two measures are nearly identical in most applications 
since the income effect is quite small for deer hunting.   
 
6.8 Survey Mailing and Response Rate 
 

During the 1999 deer-hunting season, a 
questionnaire (available on request form author) was 
mailed to a random sample of deer hunters with licenses 
for deer in Zone D19, which includes the SJRD.  Of 762 
questionnaires mailed to deer hunters in California during 
the 1999 hunting season, 7 were undeliverable.  A total of 
356 deer hunters’ responses were collected after two 
mailings.  Response rate is, therefore, approximately 47 
percent.  Among these respondents, 69 did not hunt deer 
in the San Bernardino National Forest, SJRD.   

 

 
 
Table 7—Statistics for variables used in the Travel Cost Method. 
 
Variable1 Mean Median Maximum Minimum Std. Deviation 
 
NUMTRIPS 5.56 4.0 62.0 1.0 6.26 
Age (years) 43.0 42.0 80.0 13.0 13.40 
DeerKill (Pct) 9.7 0.0 N/A N/A 0.29 
HuntOpen (Pct) 72.3 N/A N/A N/A 0.45 
HuntOrg (Pct) 35.0 N/A N/A N/A 0.48 
PrevSeas (Pct) 81.3 N/A N/A N/A 0.39  
PrivLand (Pct) 15.0 N/A N/A N/A 0.36 
RTravMiles (miles) 103.80 80.0 800.0 0.5 95.11 
PcInc $33,148.00 $32,500.0 $100,000.0 $833.0 $18,287.00 
ToTimeBud (days) 19.78 23.0 31.0 0.0 10.27 
TravTime (hours) 1.43 1.2 9.0 0.1 0.98  

 

1See table 6 for definition of variables 
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More than 72 percent of respondents did hunt 
on opening day.  The average deer hunter’s age is 
around 43 years old with a mean income slightly more 
than $33,000 dollars (table 7).  

The distribution of dependent variable 
observations reflects how many hunting trips the 
hunter took during the 1999 deer-hunting season:   

 
  Number of trips Number of deer hunters 
 
  NA 58 
  0 2 
  1-5 207 
  6-10 53 
  11-15 13 
  16-20 10 
  21-30 6 
  31-40 0 
  41-50 1 
  Above 50 1 
  Total 351 

 
The majority of deer hunters took at least one 

hunting trip during the season.  Two hunters indicated 
that they did not take any hunting trip in the 1999 
deer-hunting season.  Fifty-eight hunters did not 
answer this question because they did not hunt within 
the SJRD.  In addition, more than 80 hunters took 
more than 6 hunting trips in the 1999 deer-hunting 

season.  One reasonable explanation for this is that those 
deer hunters live close by the SJRD.   
 
7. STATISTICAL RESULTS OF TCM AND CVM 

VALUATION MODELS 
 
7.1 Travel Cost Method 
 

A negative binomial count data model was used to 
estimate the statistical relationship between number of 
trips and all the independent variables (table 8).  There is 
a negative effect of travel miles (TravMiles), travel time 
(TravTime), and income (PcInc):  increase in travel 
distance and time results in a decrease in the number of 
trips the hunter will take.  The negative coefficient explains 
the disutility effect caused by travel time and travel cost 
increases.  Income, in this study, is insignificant.  Also, 
regression results of this study indicate whether a hunter 
successfully harvested a deer during the hunting season 
(i.e., DeerKill), whether the individual hunted on opening 
day (i.e., HuntOpen), whether the hunter hunted in this 
area in a previous season (i.e., PrevSeas), and whether 
total time budget (i.e., ToTimeBud) had significant effects 
on the number of hunting trips hunters take.  Indeed, 
hunters who hunted on opening day, hunted in this area 
last year, harvested a deer, had a larger time budget, and 
took more hunting trips.  Consistent with economic theory, 
hunters with longer round-trip travel miles (RTravMiles) 
and travel time (TravTime) tend to take fewer hunting trips. 
  

 
Table 8--Estimated negative binomial count data demand equation for the Travel Cost Method. 
 

Variable   Coefficient   Std. Error    Z-Stats Probability  
 
Constant 

 
1.325 

 
0.216 

 
6.123 

 
0.00 

Age 0.001 0.004 0.369 0.71 
DeerKill 0.367 0.155 2.370 0.02** 

HuntOpen 0.524 0.115 4.564 0.00*** 

HuntOrg 0.068 0.106 0.639 0.52 
PrevSeas 0.285 0.135 2.122 0.03** 

PrivLand 0.038 0.132 0.289 0.77 
RTravMiles -0.002 0.0009 -2.490 0.01*** 

PcInc -1.00E-06 2.78E-06 -0.360 0.72 
ToTimeBud 0.010 0.005 2.099 0.04** 

TravTime -0.289 0.087 -3.334 0.00*** 

 

R2 = 0.21, Adjusted R2  = 0.17 
Consumer surplus = $134.53/trip  
90 Pct confidence interval: $81.13 - $393.59 
Marginal consumer surplus per deer harvested = $257.17/deer  
90 Pct confidence interval: $155-$752 
 
**Significant at α = 0.05; ***Significant at α = 0.01  
 

Consumer surplus is calculated by using the 
method of Sorg and others (1985) (equation 9).  

 
Consumer Surplus = -1/β (i.e., coeff. of distance) (9) 

*$0.30/mile (i.e., cost per mile).   
= 1/0.002230 x $0.30 = 448.43 x $0.30  
= $134.53/trip, 

in which the $0.30 represents sample average cost per 
mile.  

Finally, the 90 Percent confidence interval is 
obtained by equation 10: 
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90 Pct confidence interval on Consumer         (10) 
Surplus per Trip = 1/(βDIST  
± 1.64 x 0.000895) x $0.30/mile 

  = $81.13 - $393.59 per trip 
 
To estimate the benefits of harvesting an 

additional deer, consider that the average number of 
trips per hunter is 5.56 trips, and 1 out of 10 deer 
hunters successfully harvests a deer.  Therefore, 
average consumer surplus per deer harvested is 10 x 
5.56 x $134.53 = $7,480 per deer harvested.  To 
calculate the incremental or marginal value of an 
additional deer suitable to compare to marginal costs, 
we can use the TCM demand equation to predict the 
extra number of trips deer hunters would take if they 
knew they would harvest a deer that season.  This 
essentially shifts the demand curve out by the amount 
of the coefficient on deer harvest.  The equation 
predicts that hunters would take 1.9116 more trips 
each season if they knew they would harvest a deer.  
Therefore, the marginal value of another deer 
harvested (i.e., marginal consumer surplus) is equal 
to $134.53 * 1.9116 = $257.17 per deer harvested.  
Finally, the 90 percent confidence interval (CI) 
(equation 11) for an additional deer harvested is 
obtained by applying the 90 percent CI on the value 

per trip times the additional number of trips taken by the 
hunter: 

 
90 Pct confidence interval of the value                (11) 

of harvesting an additional deer =    
(1.9116 x $81.13) - (1.9116 x $393.59)  
= $155 - $752 per deer harvested.  
 

7.3 Contingent Valuation Method 
 
In the survey, people were asked their maximum 

WTP for their most recent trip under current conditions, 
and their maximum WTP per trip for a 100 percent 
guaranteed chance to harvest a deer over the season.  
The consumer surplus and people’s maximum WTP per 
trip were computed (table 9).  The CVM estimate of 
consumer surplus under current low success rate (9 
percent) was $17.59 per trip, while with 100 percent 
chance of harvesting a deer over the season the 
consumer surplus estimate rose to $116.19 per trip.  The 
per-trip figure requires multiplying the mean by the change 
in number of trips over the season to allow comparison 
with TCM, since TCM indicates a change of 1.9116 trips 
when deer harvest is certain over the season.  In CVM, 
therefore, consumer surplus is equal to MaxWTPKill 
multiplied by 1.9116 trips, or $222/deer. 
 

 
Table 9--Results (dollars per trip) using the Contingent Valuation Method.  
 

 MaxWTPKill1 MaxWTPCur2 MWTPDeer3 

 
Mean 

 
116.19 

 
17.59 

 
98.60 

Median 50.00 0.00 50.00 
Maximum 2300.00 500.00 2300.00 
Minimum 0.00 0.00 0.00 
Std. dev.  200.24 58.68 191.99 
Marginal consumer surplus per deer harvested = $222/deer,   
 
90 Pct confidence interval: $178 - $265 
 
N = 357 

 

1Maximum willingness-to-pay for harvesting an additional deer with 100 percent certainty 
2Maximum willingness-to-pay for harvesting a deer under current conditions 
3Maximum willingness-to-pay per deer harvested  
 
 

The 90 percent Confidence Interval on seasonal 
consumer surplus for harvesting an additional deer is: 
  
= ∆Trips x Mean ± (t-value@90Pct) x ((St. Dev.) / √n) 

= 1.9116 x [$116.18 ±1.64 x (200.2411/√210)] 
= $178 - $265 per deer harvested 
 

7.2 Comparing the Consumer Surplus from TCM 
and CVM 

 
The marginal consumer surplus of harvesting an 

additional deer estimated by TCM is $257 (table 8), 
and the marginal consumer surplus estimated by 
CVM is $222 a deer (table 9).  Comparing the 90  

 
 

percent confidence intervals, TCM has a range from $155 
to $752, and CVM ranges from $178 to $265 per deer 
harvested.   

To estimate the CVM inverse demand curve, 246 
observations were used after 103 observations were 
dropped because of one or more missing variables.  The 
results (table 10) show consistency between the CVM 
inverse demand function and the TCM demand function 
for most independent variables except whether the hunter 
had hunted in this area in a previous season (i.e., 
PrevSeas), whether the hunter had hunted on private land 
(i.e., Privland), and round-trip travel miles from home to 
the hunt location (i.e., RTravMiles).  Specifically, the 
remaining seven variables were either the same sign or 
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insignificant in both TCM and CVM.  The comparison 
results indicate that whether the hunter successfully 
harvested a deer (i.e., DeerKill) plays a vital role in 
influencing people’s current WTP (i.e., MaxWTPCur) 
for deer hunting in the SJRD—similar to the TCM 
demand function.  The coefficient on DeerKill) (table  

 
 

10) offers a second CVM way to calculate the marginal 
value per deer harvest per hunter.  By multiplying 
$123/deer/trip with 1.911 trips, marginal value per deer 
harvest is $235/deer.  This value is still consistent with 
previous TCM and CVM analyses in tables 9 and 10.  
 
 
 

Table 10--Inverse demand curve for the Contingent Valuation Method. 
 
 

Variable Coefficient Std. Error Z-Stats Probability 
 

Constant -143.8908 66.9346 -2.1497 0.032** 
Age -0.0958 1.0850 -0.0883 0.930 
DeerKill       123.0983 42.4801 2.8978 0.004*** 

HuntOpen         15.4554 32.3074 0.4784 0.632 
HuntOrg         34.3721 29.8438 1.1517 0.249 
PrevSeas        -44.9252 35.8284 -1.2539 0.210 
Privland        -19.1205 39.4412 -0.4848 0.628 
RTravMiles           0.3784 0.2262 1.6727 0.094* 
PcInc           0.0004 0.0008 0.5516 0.581 
ToTimeBud           0.7401 1.4302 0.5175 0.605 
TravTime        -27.7475 24.8721 -1.1156 0.265 
 
Marginal value per deer harvest = 1.9116 trips x 123.0983 = $235/deer 

*Significant at α = 0.10; **Significant at α = 0.05; ***Significant at α = 0.01  
 
8. APPLICATIONS OF VALUES TO ESTIMATE 

BENEFITS OF PRESCRIBED BURNING 
 

Both CVM and TCM were used to evaluate the 
change in deer hunting benefits due to an increase in 
deer harvest resulting from additional prescribed 
burning.  In the TCM analysis, we found the change in 
consumer surplus is $257 with additional trips the 
hunter took in response to increasing deer harvest.  
From CVM, we found that the change in consumer 
surplus is slightly less than the TCM result: $222 per 
deer harvested.  The mid-point marginal consumer 
surplus of TCM and CVM, therefore, is $239.5 per 
deer harvested, or $240 with rounding. 

 

 
The annual deer hunting benefits of prescribed 

burning additional acres was computed (table 11).  While 
the initial deer hunting benefit in response to prescribed 
burning of 1,100 acres ranges from $3,840 to $7,920 
depending on the model, the incremental gains in deer 
hunting benefits when more acres are burned are quite 
similar across models.  In other words, the annual 
economic hunting benefits of increasing prescribed 
burning from its current level of 1,100 acres to 4,810 acres 
is $1,920, regardless of the model used.  Likewise, when 
an additional 3,700 acres are burned (to 8,510 acres), the 
deer hunting benefits are between $960 and $1,200 each 
year, which are fairly similar despite the different modeling 
approaches.  
 

 
Table 11--Annual deer hunting benefits from increased prescribed burning: results from macro time-series  
model and geographic information system (GIS) micro model. 
 
 Macro time-series model GIS micro model 
 
Additional   Marginal  Annual increase Additional  Marginal Annual increase 
prescribed increase in in deer hunting prescribed increase in in deer hunting 
Acres burned  deer harvest benefits   acres burned deer harvest  benefits 
 
1,100  33 $7,920 1,100 16 $3,840 
3,710  8 $1,920 3,710 8 $1,920  
3,700  4 $960 3,700 5 $1,200 
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9. COMPARISON TO COSTS 
 
The costs of prescribed burning on the San 

Bernardino National Forest range from $210 to $240 
per acre (Walker 2001).  This is a much lower total 
cost per acre than that reported by González-Cabán 
and McKetta (1986) but substantially higher than the 
direct costs per acre for southwestern National 
Forests reported by Wood (1988).  Nonetheless, if we 
use the $210 per-acre figure, the full incremental 
costs of burning the first 1,100 acres would be 
$231,000 with each additional 3,710 acres burned 
costing $779,100.  The deer hunting benefits 
represent at most about 3.4 percent of the total costs 
of the first 1,100 acres of prescribed burning.   

This finding can be used in two ways.  First, the 
incremental costs of including deer objectives in the 
prescribed burn should not exceed $8,000, as the 
incremental benefits are no larger than this.  Second, 
the other multiple-use benefits, such as watershed 
and recreation, as well as the benefits to adjacent 
communities of reducing of hazardous fuel would 
need to make up the difference if the prescribed 
burning program is to pass a benefit-cost test.  If 
prescribed burning of 1,100 acres prevented as few 
as two residential structures from burning, the 
prescribed burn program would likely pass a benefit-
cost test.  Such an assessment is beyond the scope 
of this study, however.  Many of these multiple-use 
benefits from a prescribed fire are received for at least 
5 years and as many as 10-12 years (Gibbs and 
others 1995).  Thus, a simple annualization of the 
costs brings the 1,100-acre figure down to $23,100.  
Deer hunting benefits would cover between 16 and 34 
percent of the annual costs of the first 1,100 acres.  
However, deer hunting benefits would only be minimal 
(less than 1 percent) compared to further increases in 
prescribed burning.  

 
10. CONCLUSION 

 
This study evaluated the response of deer 

harvest and deer hunting benefits to prescribed 
burning in the SJRD of California.  To estimate 
hunter’s benefits or WTP for harvesting an additional 
deer, the individual observation TCM and open-ended 
CVM were used.  The mean WTP to harvest another 
deer is about $257 for TCM and $222 for CVM.  One 
reason for such consistency may be that the 
respondents hunted in the SJRD in previous years.  
About 80 percent of the deer hunters in SJRD hunted 
there in the previous season.  Also, the changes in 
number of trips taken for the increase in harvest 
estimated from TCM were used to scale up both TCM 
and CVM per-trip benefits to get a seasonal change. 
Hypothetical bias is a valid criticism of CVM studies. 
However, because TCM contains no hypothetical bias 
and the TCM result is consistent with the CVM 
estimate, it may be that the hypothetical bias in this 
study was minimal for CVM.  

With regard to the response of deer harvest to 
prescribed fire and wildfire, we compared a macro 

level time-series model that treated the entire SJRD as 
one area and a micro GIS model that disaggregated the 
SJRD into the 37 hunting locations reported by hunters.  
Both models gave somewhat mixed results, in that some 
statistical specifications showed no statistically significant 
effect of prescribed burning or a negative effect of lagged 
wildfire, or both.  However, the better-fitting (68 percent of 
variation explained) log-log model functional form of the 
macro time-series model did show a statistically significant 
effect of the combined prescribed fire and wildfire acres on 
deer harvest over the 20-year period of 1979-1998.  Two 
of the three micro GIS model specifications indicate that 
the initial effect of prescribed burning had a statistically 
significant effect on deer harvest in the 37 hunting 
locations within the SJRD.  Lagged effects of prescribed 
burning were consistently insignificant in our models, 
suggesting that most of the benefits occur in the year of 
the burn.  The macro time-series model estimated a larger 
response to burning of the first 1,100 acres than the micro 
GIS model did, but for increases in fire beyond 1,100 
acres, the two models provided nearly identical estimates.  

Combining the average of the TCM and CVM 
estimated economic benefits with the deer harvest 
response to fire yields annual economic benefits ranging 
from $3,840 to $7,920 for the first 1,100 acres burned.  
For 3,700 additional acres burned, the gain is $1,920 
annually, while for another additional 3,700 acres the 
increase ranges from $960 to $1,200 per year.  

The costs of prescribed burning on the San 
Bernardino National Forest range from $210 to $240 per 
acre.  Thus, the costs to burn an additional 1,100 acres 
are $231,000, which is an order of magnitude larger than 
the deer hunting benefits gained. Specifically, the deer 
hunting benefits of the first 1,100 acres represent about 
3.4 percent of the total costs.  Thus, the other multiple-use 
benefits of prescribed burning, such as providing 
opportunities for dispersed recreation, protecting 
watershed, and reducing hazardous fuels in surrounding 
communities would have to cover the rest.  Investigating 
the extent of these benefits would be a logical next step in 
evaluating the economic efficiency of prescribed burning in 
the SJRD.  

Although fire management practices have been 
identified as having widespread impacts on deer habitats, 
many other factors affect deer habitat.  These other 
factors include livestock grazing, timber harvesting, urban 
development, diseases, and habitat loss along with annual 
weather patterns (CDFG 1998).  This study attempted to 
take into account as many factors as possible.  However, 
the amount of data and time available for modeling were a 
constraint.  

When the wildfire and prescribed fire variables were 
combined the macro time-series model demonstrated 
positive and significant effects from total fire.  This 
appears to be in line with a previous study in which the 
density of deer increased during the growing season after 
the burn (Klinger and others 1989).  A study of prescribed 
burning in northern California found prescribed burning to 
have only modest effects of increasing deer habitat use 
and mentioned that any increases in use are difficult to 
quantify (Kie 1984). 
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Some future improvements in our modeling 
effort that may better isolate the effects of prescribed 
burning on deer habitat include controlling for the 
severity of wildfire because different fire severities will 
have different effects on vegetation and soils  (Ryan 
and Noste 1983).  Further, including a vegetation and 
soils layer in the GIS model, rather than using 
elevation as a proxy, could improve the predictive 
ability of the GIS-based model as well.  

Subject to these caveats, this paper has 
demonstrated two approaches to estimate a 
production function relating prescribed burning to 
effects on deer harvest.  We found positive and 
significant effects on deer harvest for two of the three 
GIS models and the positive impact of fire using a 
macro time-series model.  The USDA Forest Service 
and CDFG can make use of these approaches for 
future cost-benefit analysis of prescribed burning.    
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